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ABSTRACT 
The Desert Research Institute (DRI) prepared this work as part of the Klamath River 

Revised Natural Flow Study (KRRNFS). In 2020 as part of the Klamath Basin Science 
Initiative, the United States (U.S.) Department of the Interior (DOI) tasked Reclamation with 
estimating refined natural streamflow estimates throughout the Klamath River Basin in a 
comprehensive NFS. For the NFS, we define natural streamflow as the streamflow that 
would have occurred in the absence of land use changes (agriculture, forestry, etc.), major 
development (roads, railroads, municipalities, etc.), and water management (dams, 
hydroelectric plants, etc.). This study aims to advance science in the Klamath River Basin, 
and thereby support future analyses and studies throughout the basin. Primarily, the 
KRRNFS leverages current science, data, methods, and tools to develop revised natural 
streamflow estimates for the Klamath River Basin, while improving upon limitations of 
previous estimates (Reclamation, 2005; Hardy & Addley, 2006) and incorporating comments 
provided by the National Research Council (NRC) (2008). The resulting natural streamflow 
estimates may be of use in habitat studies, drought planning, and water supply allocation 
decision making. 

This report describes the Evapotranspiration task to support the KRRNFS with the 
development of annual estimates of 1) actual ET (ETa), effective precipitation, and net ET for 
croplands, 2) ETa and net ET for wetlands, 3) groundwater ET (ETg) from phreatophyte 
shrubland vegetation. This work included the development of numerous supporting and 
derived geospatial datasets describing irrigated area, irrigation system type, and cropland 
field boundary extents. These datasets are fundamental for quantifying the hydrologic 
budget, consumptive water use, and model boundary conditions that will support conceptual 
and numerical modeling activities being conducted by the Bureau of Reclamation’s 
Technical Service Center (TSC) and the USGS to arrive at daily naturalized streamflow 
estimates in the Klamath River Basin over water years 1981–2020. 

This work improves on previous analyses which relied on assumed or static rates of 
ET and effective precipitation, through the application of the best available science which 
combines cutting-edge cloud-computing, manually-edited agricultural field boundaries 
depicting the maximum irrigated extent, long-term remote sensing data provided by Landsat 
(1985–2020), and daily calculations of meteorological conditions produced by gridMET 
(1979–2020). The produced data were dynamic over the period of study and represent real, 
on-the-ground conditions of the study area. The primary results from this effort are compiled 
into a series of field specific .csv files which are formatted for use in modeling and analysis 
using computer scripting languages. The data produced by the ET task may be aggregated to 
irrigation districts or to hydrologic units as suitable for analysis and implementation into the 
KRRNFS. The crop ET and effective precipitation estimates were provided for the purpose 
of estimating surface water irrigation deliveries. Irrigation delivery and wetland ET estimates 
are primary inputs in the development of natural streamflow estimates for the Klamath River 
Basin. 
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INTRODUCTION 1 

The Desert Research Institute (DRI) prepared this work summarizing 2 
evapotranspiration (ET) as part of the Klamath River Revised Natural Flow Study 3 
(KRRNFS). In 2020, as part of the Klamath Basin Science Initiative, the United States (U.S.) 4 
Department of the Interior (DOI) tasked Reclamation with estimating refined natural 5 
streamflow estimates throughout the Klamath River Basin in a comprehensive NFS. For the 6 
KRRNFS, natural streamflow was defined as the streamflow that would have occurred in the 7 
absence of land use changes (agriculture, forestry, etc.), major development (roads, railroads, 8 
municipalities, etc.), and water management (dams, hydroelectric plants, etc.). This study 9 
aims to advance science in the Klamath River Basin, and thereby support future analyses and 10 
studies throughout the basin. Primarily, the KRRNFS leverages current science, data, 11 
methods, and tools to develop revised natural streamflow estimates for the Klamath River 12 
Basin, while improving upon limitations of previous estimates (Reclamation, 2005; Hardy et 13 
al., 2006) and incorporating comments provided by the National Research Council (NRC) 14 
(2008). The resulting natural streamflow estimates may be of use in habitat studies, drought 15 
planning, and water supply allocation decision making. 16 

ET is the combined process of evaporation from soil and transpiration from 17 
vegetation. ET is the largest discharge component of the hydrologic budget and largest 18 
consumptive use of water diverted from the Klamath River (Figure 1). Therefore, quantifying 19 
ET from natural discharge and cropland areas is of primary importance in estimating and 20 
assessing naturalized streamflow in the Klamath River Basin. Annual and monthly ET from 21 
irrigated agriculture is primarily a function of water availability, atmospheric water demand, 22 
crop type, and vegetation conditions. The use of remote sensing data acquired from thermal 23 
and optical sensors on-board the Landsat series of satellites is ideal for quantifying multi-24 
decadal ET estimates for native and agricultural vegetation given the field-scale and sub-25 
monthly resolution of data and provides data continuity dating back to 1984. This report 26 
summarizes modeling and data processing steps specific to the ET analysis subtask of the 27 
KRRNFS. Additional details regarding ET data applications and incorporation in 28 
groundwater and surface water modeling components can be found within the respective 29 
subtask reports.  30 
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 1 
Figure 1. Geographical extent of project phases in the Klamath River Revised Natural Flow Study 2 

(KRRNFS). Image provided by USBR. 3 

 4 

Basin Description  5 

The Klamath River flows west from its headwaters near Crater Lake in southern 6 
Oregon to its outflow at the Pacific Ocean in northern California. The Klamath River Basin 7 
has a diverse environment, spanning multiple distinct climate zones and ecological habitats, 8 
and is typically divided into two portions: Upper and Lower Klamath Basins. The Upper 9 
Klamath Basin (UKB) drains all catchments above the location of Iron Gate Dam and is 10 
primarily in Oregon. Located in the rain shadow on the eastern side of the Cascade Mountain 11 
Range, this portion of the basin has an arid climate. Vegetation within the UKB is primarily 12 
drought-tolerant trees, such as lodgepole and ponderosa pines, along with shrubs, grasslands, 13 
and even wetlands in the lower elevations and near lakes. However, despite its aridity, the 14 
UKB features Oregon’s largest natural lake by surface area—Upper Klamath Lake (UKL)—15 
extensive wetlands, abundant wildlife, and widespread urban and agricultural development. 16 
The Lower Klamath Basin (LKB) consists of the catchments below the location of Iron Gate 17 
Dam and is primarily California. In contrast, located in the Pacific Coastal Range, the LKB 18 
receives ample rainfall. The LKB is well forested by a palette of northern California and 19 
Pacific Northwest conifers and hardwoods. While the LKB has no major natural lakes and 20 
less urban and agricultural development than in the UKB, it is home to the federally 21 



 

 
3 

recognized tribal lands of multiple Native American Tribes. The Klamath River was 1 
historically home to multiple thriving fish populations, including: Lost River and shortnose 2 
suckers, bull trout, and chinook and coho salmon (Guertin, 2022).  3 

Indigenous people have inhabited the Klamath River Basin since time immemorial 4 
(Beckham, 2006). Presently, the basin is home to six federally recognized Native American 5 
Tribes: the Yurok Tribe; Hoopa Valley Tribe; Karuk Tribe; the Klamath Tribes, comprised of 6 
Klamath, Modoc, and Yashookin; Quartz Valley Indian Community; and Resighini 7 
Rancheria (77 FR 47868). Numerous additional native groups that are not federally 8 
recognized, such as the Shasta people, inhabit parts of Northern California and Southern 9 
Oregon. Although they are not federally recognized, some have been inducted into the Karuk 10 
Tribe (Beckham, 2006). The Klamath River and canyon and many of the fish species 11 
throughout the basin are considered sacred by the native tribes and have played a critical role 12 
in their survival and cultural identity (Bureau of Land Management, 1990). Management 13 
practices of native people left much of the natural landscape unchanged prior to non-native 14 
settlement. 15 

Early non-native settlers began entering the region in the early 1800s and focused on 16 
agricultural production, including farming, fishing, and ranching. The abundance of large, 17 
flat, grassy meadows with lakes and marshy areas to provide water encouraged the expansion 18 
of grazing in the UKB (Stene, 1994). In 1905, Congress authorized Reclamation to begin the 19 
Klamath Project, a federal irrigation project designed to locate and contract irrigation 20 
networks designed to support productive agricultural communities. The Klamath Project was 21 
unique to other federal-sponsored projects in the arid west due to the nature of the landscape. 22 
Rather than transform arid lands into farmlands, Reclamation sought to drain the wetlands 23 
located around the natural lakes—Upper Klamath Lake (UKL), Lower Klamath Lake (LKL), 24 
and Tule Lake—and transform them into reclaimed agricultural lands. To accomplish this 25 
vision, over the next 20 years Reclamation constructed a complicated system of diversion 26 
canals, dams, and drainage canals to facilitate this alteration of the basin. In addition to the 27 
Klamath Project, with the arrival of the railroad in 1909, timber harvesting activities grew in 28 
the basin.  29 

 Land use, development, and water management practices directly impacting the 30 
UKB and affecting the flow regime and ecology of the LKB have greatly altered the Klamath 31 
River Basin from its natural state. While once the third most productive salmon run on the 32 
West Coast, fish populations in the Klamath River have dwindled and include multiple 33 
Federally listed endangered species. The current streamflow regime is significantly altered 34 
from the natural streamflow regime that would exist without the above-mentioned changes to 35 
the basin. 36 

 37 

Project Purpose and Overall Approach  38 

The KRRNFS study aims to both improve upon previous estimates of unimpaired 39 
streamflow (Reclamation, 2005; Hardy et al., 2006) and incorporate comments provided by 40 
the NRC (2008) on those estimates. The NFS uses current science, methods, and tools to 41 
develop revised natural streamflow estimates for the Klamath River Basin. To this end, we 42 
estimate streamflow for both pre-development and current conditions:  43 
 44 
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• Pre-development Conditions – the landscape and hydrologic conditions that 1 
existed in approximately 1900, prior to major development of the region for 2 
irrigated agriculture, forestry, and other purposes.  3 

• Current Conditions – the landscape and water demand conditions throughout the 4 
past four decades, as a result of land use, development, and water management 5 
practices.  6 

 7 

Although natural streamflow is often defined as that which would occur in the 8 
absence of human intervention, we define natural streamflow estimates as that which would 9 
occur under pre-development conditions in approximately 1900. While development prior to 10 
1900 included minor diversions and irrigation of small portions of the watershed (Stene, 11 
1994), historical documentation suggests that these had overall a small impact on the natural 12 
hydrologic system. Through use of multiple models and mass balance techniques, we remove 13 
the effects of existing development from the observed streamflow records for 1981 to 2020 to 14 
develop daily estimates of natural streamflow.  15 

 16 

 17 
Figure 2. Conceptual diagram of the models and data needed to develop natural flow estimates for the 18 

Klamath Basin. Image provided by USBR. 19 

 20 

 21 



 

 
5 

 1 

 2 

The NFS evaluates both pre-development and current conditions by integrating six 3 
numerical modeling components (Figure 2) through implementation of a mass balance model 4 
in RiverWare. These components are interconnected:   5 

 6 

1. Surface hydrology modeling quantifies distributed precipitation recharge. The 7 
groundwater model uses this distributed precipitation recharge output.  8 

2. Groundwater modeling simulates groundwater conditions and estimates 9 
groundwater levels, groundwater storage, pumping, groundwater recharge from 10 
deep percolation of irrigation, interception of groundwater by drains, 11 
evapotranspiration from groundwater, and subsurface flow. In the LKB, 12 
groundwater modeling focuses on groundwater and surface water interactions in 13 
the Scott and Shasta River basins. The mass balance model uses the groundwater 14 
model output for baseflow to streams and seepage to and from lakes and 15 
reservoirs.  16 

3. Consumptive use modeling estimates net evapotranspiration (ET) (ET subtract 17 
effective precipitation), deep percolation of irrigation water to groundwater, and 18 
ET estimates for groundwater dependent vegetation. Multiple other models use 19 
the resulting ET estimates, including groundwater (e.g., ET discharge and deep 20 
percolation recharge are connected to the groundwater model), surface water (e.g., 21 
consumptive use estimates are used to calibrate the surface hydrology model), and 22 
mass balance (e.g., consumptive use demands met by surface water are key inputs 23 
to the mass balance model). 24 

4. Open water evaporation modeling quantifies evaporation rates from lakes and 25 
reservoirs. The mass balance and surface water models use these evaporation rates 26 
as a component in modeling the mass balance of lakes and reservoirs (current 27 
condition only) and calibration, respectively.  28 

5. Hydraulic modeling quantifies the natural storage capacities, hydraulic controls, 29 
and interconnectedness of rivers, lakes, and wetlands in the basin. The mass 30 
balance model uses resulting hydraulic information to represent surface flow 31 
exchanges from the Klamath River to and from the Lost River basins, and the 32 
open water evaporation model uses resulting estimated average lake/reservoir 33 
depths through use of digital elevation models.  34 

6. Mass balance modeling incorporates streamflow observations, direct output from 35 
the other models (e.g., baseflow contributions to streams, evaporation from lakes, 36 
etc.), hydraulic controls, lake and reservoir capacities, and physical features of the 37 
river system, to estimate natural streamflow at specific locations. Together, the 38 
mass balance model aims to quantify pre-development era streamflow by 39 
accounting for changes in hydrologic inputs and losses contributing to flow at 40 
identified locations.  41 

 42 
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For the NFS, the study area was divided into three geographic regions, referred to as 1 
“phases” (Figure 1). UKB was split into two phases: Phase 1 includes all inflows to UKL 2 
such as the Wood River, Sprague River, and Williamson River, with the downstream 3 
boundary at Link River Dam; and Phase 2 includes the UKB between Link River Dam and 4 
Iron Gate Dam. Phase 3 includes most of the LKB, encompassing the contributing areas 5 
downstream of Iron Gate Dam to the Klamath River upstream of its confluence with the 6 
Trinity River.  7 

This report describes estimates of ET for all modeling phases of the KRRNFS. Other 8 
modeling reports and geographic extents will be published upon completion. Once all 9 
modeling components are complete an overall report will summarize methods and findings 10 
for all components and geographical extents.   11 

 12 

OBJECTIVES 13 

The objective of this study was to collaborate with the USBR to develop rates and 14 
volumetric estimates of 1) ETa and net ET (ET less effective precipitation) from agricultural, 15 
2) ETa and net ET from wetlands, and 3) the groundwater component of ET (ETg) from 16 
phreatophyte shrublands. This process included development of numerous supporting and 17 
derived geospatial datasets such as irrigated area, irrigation system type, cropland field 18 
boundary extents, and applied water through time to support the KRRNFS. ET, net ET, and 19 
supporting geospatial datasets characterize fundamental components of the hydrologic 20 
budget and will support conceptual and numerical hydrologic modeling activities being 21 
conducted by the Bureau of Reclamation’s Technical Service Center (TSC) and the USGS 22 
(Figure 3). More specifically, estimates of net for agricultural lands will be used to estimate 23 
surface water irrigation deliveries in areas where in situ observations are limited to main 24 
canals. Irrigation delivery and wetland ET estimates are primary inputs in the development of 25 
the Klamath River Basin natural streamflow estimations. 26 

 27 
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 1 
Figure 3. Conceptual diagram of the hydrologic cycle within the Klamath River Basin, with emphasis 2 

on the ET components of the KRRNFS. Image provided by USBR.  3 

 4 

APPROACH 5 

The general approach of this study combines remotely sensed ET with soil water 6 
balance derived effective precipitation estimates to summarize ET and net ET (ET minus 7 
effective precipitation) for agricultural, phreatophyte shrubland, and wetland vegetation 8 
throughout the Klamath Basin from 1980–2020. Several spatial datasets including 9 
agricultural field boundaries, crop and landcover type, irrigation status, and system type were 10 
also developed to support spatial ET and net ET summaries and surface and groundwater 11 
modeling workflows. The satellite surface energy balance (SEB) model Mapping 12 
EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) (Allen et al., 13 
2007) was used to estimate 30-meter resolution maps of monthly ET from 1985–2020 for 14 
agricultural and wetland areas. More specifically, monthly ET estimates were produced using 15 
the OpenET platform (Melton et al., 2022) which runs an implementation of METRIC 16 
(eeMETRIC) with automated calibration (Allen et al., 2013; Morton et al., 2013) within the 17 
Google Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017). Because 18 
satellite-based ET includes ET derived from precipitation, the portion of precipitation that is 19 
“effective” or contributes to ET must be subtracted to estimate net ET or depletion (Bos et 20 
al., 2009). Net ET estimates ultimately serve as the foundational data for estimating irrigation 21 
application rates, irrigation withdrawals, and Net Irrigation Water Requirements (NIWR) 22 
(Jensen and Allen, 2016; Allen et al., 1998). In agricultural areas, net ET is equivalent to the 23 
consumptive use of irrigation water (CUirr), while in groundwater dependent ecosystems, 24 



 

 
8 

such as phreatophyte shrublands and wetlands, net ET is equivalent to groundwater ET 1 
(ETg). For this work, researchers used the crop consumptive use model, ET Demands, to 2 
estimate effective precipitation in areas of irrigated agriculture. ET Demands effective 3 
precipitation was then subtracted from eeMETRIC ETa to estimate agricultural net ET (i.e., 4 
CUirr).Similar combinations of satellite-based ET and ET Demands effective precipitation 5 
have been used in the Upper Colorado River Basin and the State of Oregon in support of 6 
agricultural consumptive uses and losses modeling and reporting (Huntington et al., 2022; 7 
Huntington et al., 2024, in review). Unlike agricultural areas, nearly all precipitation in both 8 
phreatophyte shrubland and wetlands areas is effective and consumed by ET (i.e., no losses 9 
to runoff or deep percolation). Wetland net ET estimates were developed as eeMETRIC 10 
monthly ETa less total precipitation. Last, to avoid known issues with SEB modeling in lower 11 
ET, sparsely vegetated areas, ETg from phreatophyte shrublands was estimated directly using 12 
the Beamer-Minor method (BMM) based on satellite imagery, vegetation indices, 13 
precipitation, reference ET, and micrometeorological-based ET estimates. Databases, 14 
summaries ET, net ET, precipitation, effective precipitation, and metadata from this work are 15 
documented and available for use in the KRRNFS but may be applicable to related studies. 16 
The combined outputs from study modeling and databases are intended to be used as input to 17 
surface water and groundwater modeling efforts to simulate and assess pre-development 18 
natural streamflow estimates for the Klamath River.  19 

 20 

METHODS 21 

Boundary Digitizing and Attribution 22 

To meet project requirements, agricultural field boundaries depicting the maximum 23 
irrigated extent of all agricultural lands within the Klamath River Basin were developed to 24 
produce field-level monthly and annual spatial summaries ET, net ET, and related attribution 25 
for all irrigated lands within the KRRNFS area for the entire period of study. Areas of 26 
wetland and phreatophytic vegetation were similarly digitized to create summaries of ET for 27 
these areas of natural landcover.  28 
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 1 
Figure 4. Study area of KRRNFS, Hydrologic Unit Code (HUC)-8 basins, agricultural field 2 

boundaries, and eddy covariance stations used for assessing remote sensing data.  3 

 4 

Field Boundary Digitizing 5 

A single dataset of field boundaries for all agricultural lands within the Klamath 6 
River Basin was developed and digitized at the 1:2,500 scale within Geographic Information 7 
Systems (GIS) software in collaboration with TSC and Oregon Water Resources Department 8 
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(OWRD). Field boundaries were developed to represent the maximum extent of actively 1 
irrigated areas for the period of 1985–2020 (Figure 4). A compilation of existing field 2 
boundaries from California and Oregon were assembled, and aerial imagery, satellite data, 3 
and water right places of use spatial data were used to inform the extensive manual editing 4 
and creation of field boundary linework to represent the maximum irrigated extent of 5 
agriculture within the KRRNFS area. Extensive collaboration with USBR and Oregon Water 6 
Resources Department (OWRD) aided in the development and review of the field boundary 7 
dataset. Changes in field shapes, such as a square wheel-line irrigated field having changed to 8 
a center pivot irrigated circular field, were accounted for by digitizing adjoining change areas 9 
as separate features (e.g. circular area as one feature, and corners as separate features) so that 10 
individual field feature attributes could be summarized and assigned through time. Field 11 
boundaries were used to develop spatial summaries related to ET, effective precipitation, net 12 
ET, irrigated acres, and crop type, and were the primary dataset for calculating volumes of 13 
net ET. 14 

Existing field boundary datasets adopted or modified for this study included the 2019 15 
Crop Mapping Dataset developed by the California Department of Water Resources 16 
(CDWR) (California Natural Resources Agency, n.d.) and U.S. Department of Agriculture 17 
(USDA) Common Land Unit (CLU) dataset (USDA, 2008). While these datasets met spatial 18 
extent and scale requirements for this effort, neither dataset was developed to account for 19 
field boundary changes through time (annually), and boundaries did not sufficiently 20 
correspond to field extents observed in aerial and satellite imagery. Modifications were made 21 
by merging CDWR and CLU at 1:2,500 scale and manually editing using aerial imagery as 22 
reference. Imagery products were comprised of the National Agriculture Imagery Program 23 
(NAIP) (National Agriculture Imagery Program (NAIP), 2019) acquired from 1995 to 2018, 24 
USGS Digital Orthophoto Quadrangle (DOQ) (Earth Resources Observation and Science 25 
(EROS) Center, 2017) acquired from 1993 to 2000, and Oregon Statewide Imagery Program 26 
(OSIP) (State of Oregon: Oregon Geospatial Enterprise Office – Oregon Statewide Imagery 27 
Program, n.d.) acquired in 2018. Landsat derived Normalized Difference Vegetation Index 28 
(NDVI) images produced with GEE were used to visualize per-pixel maximum NDVI values 29 
for the period of July through October for 1985–2020 to identify areas that were irrigated for 30 
any portion of this period. This approach of using a combination of historical aerial and 31 
satellite imagery spanning multiple decades was important for accurately identifying irrigated 32 
lands that had been fully or partially irrigated, developed, or fallowed at different points in 33 
time over the study period. 34 

 35 

Agricultural Field Attribution 36 

The agricultural field geometries developed by DRI and TSC were populated with 37 
attributes relevant to analysis, using a variety of data sources. Attributes describing crop type 38 
were essential to the estimation of net ET, while irrigation system type attribution are 39 
necessary for assigning annual field scale irrigation efficiency which are used in the 40 
KRRNFS to model applied water. The data described below were attributed at the annual 41 
timestep, based on the data available. 42 

 43 

 44 
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Irrigation System Type  1 

The irrigation system type for each agricultural field was defined to inform estimates 2 
of irrigation efficiency over time. Workflows used to identify irrigation system type and 3 
attribute to the individual agricultural field boundaries were developed with significant input 4 
and direction from the USBR Klamath Basin Area Office (KBAO), which applied local 5 
knowledge to develop a classification scheme, produce example images of typical system 6 
configurations, and provide a review of irrigation system attribution for select areas in the 7 
Klamath River Basin. GIS technicians from TSC were valuable in augmenting DRI staff in 8 
the attribution of irrigation system type. 9 

The irrigation system type was attributed based on high spatial resolution aerial 10 
images and expert knowledge of agricultural practices within the Klamath River Basin. 11 
Initial training provided by USBR in identifying irrigation system type was followed by the 12 
creation of internal training products and the organization of group-led training sessions; 13 
these efforts were subject to review and input by USBR staff. OSIP, NAIP and DOQ imagery 14 
were used as the primary input for this work, which resulted in all agricultural fields in the 15 
Klamath River Basin attributed using the irrigation system types described in Table 1. 16 

 17 

Table 1. Classifications used to describe agricultural irrigation system type. 18 

Irrigation Type Description 

0 Developed/No longer irrigated 

1 Sprinkler-Pivot-Linear 

2 Sprinkler-Other (Wheel Line, Hand Line, Solid Set, Big Gun, Travelling Gun, Pods) 

3 Flood-Uncontrolled (Wild Flood) and No Apparent Irrigation Equipment 

4 Flood-Controlled (Land Leveling, Borders, Basins, Furrows) 

5 Micro (Micro Sprinklers, Drip Lines, Subsurface Drip) 

 19 

Due to the limited availability of high-quality aerial images for years prior to 1995, 20 
irrigation system type was attributed at an annual timestep for the period of 1995–2020. For 21 
the purposes of the KRRNFS, irrigation system types were assumed to be static for the period 22 
of 1980–1995, and represented with the 1995 classification. This assumption was made with 23 
support by KBAO based on its observations that most sprinkler systems on the Project were 24 
installed post-1995. 25 

 Aerial imagery was not available for many years; therefore, changes in irrigation 26 
system type were attributed based on expert judgment. This judgment was most often applied 27 
when a change was observed between two images acquired in non-consecutive years. In 28 
these instances, the change in irrigation system type was assumed to occur approximately 29 
halfway between image dates (e.g., a field that was “2 – Sprinkler-Other” in 2005 but 30 
appeared as “1 – Sprinkler-Pivot-Linear” in 2009 was assigned a change in status in 2007).  31 
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Crop Type 1 

Agricultural field boundaries were attributed with annual crop type classifications 2 
based on the USDA Cropland Data Layer (CDL) (Boryan et al., 2011). The CDL dataset is 3 
generally considered to be the most accurate crop type product available for field-scale 4 
annual crop type mapping for the contiguous United States (CONUS), with the most recent 5 
years of data achieving ~95% accuracy crop classification for major crop types (Zhang et al., 6 
2020). The CDL dataset is based on statistical classification using crop type training data 7 
combined with Landsat imagery data, which results in a dataset that covers the CONUS at 30 8 
m spatial resolution. Due to limitations in spectral and temporal resolution of Landsat data 9 
for some regions and time periods, it is common to have multiple crop type classifications 10 
within a single agricultural field of uniform crop type. Single crop type classifications for 11 
agricultural field boundaries were estimated and attributed based on the majority crop type 12 
within individual respective field boundaries. The attribution of crop type to the individual 13 
agricultural field boundaries is primarily used to specify crop type and parameters (e.g., 14 
rooting depth, maximum allowable depletion, crop coefficient curve) in the ET Demands 15 
model (refer to the ET Demands methods section below for additional details). Annual crop 16 
type information from CDL for the Klamath River Basin is provided by USDA from 2008-17 
2020. For years prior to continuous data availability, the majority crop type classification 18 
between 2008 and 2020 was used. 19 

 20 

Irrigation Status  21 

Irrigation status rasters and field boundary summaries were derived from version 1.2 22 
of the open-source IrrMapper model (Ketchum et al., 2020). IrrMapper uses a Random Forest 23 
(RF) modeling approach to predict four classes of “irrigated agriculture,” “dryland 24 
agriculture,” “uncultivated lands,” and “wetlands” at annual time steps and at 30m spatial 25 
resolution across the Western U.S. IrrMapper was used in this study to produce annual rasters 26 
of irrigation classes from 1985–2020. Irrigation classes were simplified into two class values 27 
of “1,” representing the irrigated class, and “0,” representing the three intermediate non-28 
irrigated classes. Field boundaries were attributed with spatially averaged binary irrigation 29 
class values at annual time steps and range from 0 to 1. A value of =>0.5 would indicate that 30 
more than half of the land contained within the field boundary was classified as irrigated.  31 

IrrMapper irrigation status was not used to develop estimates of ET or net ET 32 
represented in this work, however these data were provided to TSC to assist in the analysis of 33 
annual patterns of irrigation activity. These data could be used to aggregate summaries of net 34 
ET at basin scale and serve as a reference in identifying agricultural fields which benefit 35 
from irrigation or shallow groundwater.  36 

 37 

 38 

Phreatophyte and Wetland Mapping 39 

Pre-development potential area of groundwater discharge boundaries (i.e. 40 
phreatophyte and wetland boundaries), were digitized in a GIS using a combination of 41 
georeferenced maps delineating the spatial extent of historical wetlands and phreatophyte 42 
vegetation (Figure 5) (Gannett et al., 1887; Lippincott et al., 1905; Humphreys & Reaburn, 43 
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1905; Bureau of Reclamation, 1908). Pre-development phreatophyte and wetland boundaries 1 
were then modified using a suite of datasets to account for contemporary land cover changes 2 
from agricultural development, water diversions, depth to groundwater, drainage of natural 3 
wetlands, and climate variability. Datasets that were used to develop the delineation of 4 
contemporary phreatophyte extents include groundwater level measurements acquired from 5 
the OWRD Groundwater Information System (GWIS) 6 
(https://apps.wrd.state.or.us/apps/gw/gw_info/gw_map/Default.aspx) and the USGS National 7 
Water Information System (NWIS) (https://waterdata.usgs.gov/nwis), digital elevation model 8 
(DEM), soils data from the Soil Survey Geographic Database (SSURGO)(USDA, 2017), 9 
high resolution aerial imagery from NAIP, Landsat-derived land surface temperature (LST) 10 
and vegetation indices, maximum surface water extent (MSWE) rasters for the Klamath 11 
Marsh (Kennedy, 2021), irrigated agriculture field boundaries, and a subirrigation potential 12 
map for the Sprague basin (Snyder et al., 2012). Depth to groundwater information was 13 
combined with NAIP and Landsat imagery to constrain the phreatophyte extents to lowland 14 
areas where the depth to groundwater was less than the phreatophyte limit of 50 to 60 feet 15 
below the ground surface (Robinson, 1958; Nichols, 1994) and areas that exhibited relatively 16 
cool surface temperature and higher vegetation vigor compared to adjacent xerophytic 17 
vegetation that commonly occupy piedmont slope areas. Landsat LST data is a primary 18 
dataset for mapping ET due to evaporative cooling effects that result from the conversion of 19 
liquid to vapor (Allen et al., 2007; Anderson et al., 2012). Agricultural fields and wetland 20 
polygons within pre-development and contemporary phreatophyte areas were masked and 21 
removed from VI-based ETg estimation (Figure 6), with wetland ET estimated separately 22 
using eeMETRIC. 23 

 24 

https://apps.wrd.state.or.us/apps/gw/gw_info/gw_map/Default.aspx
https://waterdata/
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 1 
Figure 5. Pre-development potential area of groundwater discharge boundaries (includes phreatophyte 2 

vegetation, wetlands, and open water bodies within the KRRNFS area). 3 

 4 
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 1 
Figure 6. Contemporary phreatophyte shrubland boundary, wetlands, and agricultural field boundaries 2 

within the potential area of groundwater discharge. Note: some wetland areas are 3 
included in the field boundary dataset (e.g., Klamath Marsh, Lower Klamath Wildlife 4 
Refuge, and Sycan Marsh). 5 

 6 

Weather Data and Reference ET 7 

Historical weather and reference ET data used in this study were derived from the 8 
gridMET gridded weather dataset (Abatzoglou, 2013). gridMET is a daily ~4 km spatial 9 
resolution dataset providing estimates of near surface weather conditions for the contiguous 10 
United States (CONUS) from 1979 to present. gridMET combines spatial information from 11 
the Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 12 
2008) with regional reanalysis data from North American Land Data Assimilation System 13 
(NLDAS-2) (Mitchell et al., 2004, Xia et a., 2021) to provide continuous, high-resolution 14 
estimates of minimum and maximum air temperature, relative humidity, solar radiation, wind 15 
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speed, and precipitation. The American Society of Civil Engineers (ASCE) Standardized 1 
Penman-Monteith (PM) equation (ASCE-PM) for a grass reference surface (ETo) (Walter et 2 
al., 2000; ASCE-EWRI, 2005) served as a primary input for all ET estimates including actual 3 
ET (ETa) from eeMETRIC, crop potential ET (ETc) from ET Demands, and ETg from the 4 
BMM (described in detail later).  5 

The primary input data source for the gridMET dataset, NLDAS, does not account for 6 
irrigated areas and associated ET within land surface – boundary layer coupling processes 7 
(Ozdogan & Rodell, 2010). Even in highly advective arid environments, field-scale land 8 
surface-atmospheric feedbacks and boundary layer conditioning have been well documented 9 
in irrigated areas surrounded by water-limited areas; therefore, ETo estimates based on 10 
ambient non-irrigated weather data (e.g., gridMET) require adjustment (Allen et al., 1983; 11 
Temesgen et al., 1999; Szilagyi & Schepers, 2014; Huntington et al., 2015). Both eeMETRIC 12 
and ET Demands models use gridded ETo that was bias-corrected to local agricultural 13 
weather station calculations to account for known over-estimation of ETo in irrigated areas by 14 
gridMET (Allen et al., 2021; Melton et al., 2022; Huntington et al., 2022). Unlike 15 
eeMETRIC and ET Demands, BMM empirical relationships rely on native gridMET ETo 16 
estimates and therefore used non-bias-corrected ETo directly from gridMET. 17 

 Data from agricultural weather stations used in the bias correction workflow were 18 
acquired from the USBR AgriMet program, California Irrigation Management Information 19 
System (CIMIS), and the Natural Resources Conservation Service (NRCS) Soil Climate 20 
Analysis Network (SCAN) (Figure 7; Supplemental Table 1). Extensive data quality 21 
assurance and quality control (QA/QC) was performed prior to processing and calculation of 22 
ETo. Agricultural weather data were evaluated, filtered, and corrected using agweather-qaqc 23 
(Dunkerly et al., 2024), an open-source software developed DRI that processes and corrects 24 
data according to the recommendations of Allen (1996; 2008), ASCE-EWRI, and the Food 25 
and Agriculture Organization of the United Nations (FAO) guidelines (Allen et al., 1998; 26 
ASCE-EWRI, 2005). For example, solar radiation measurements were compared to 27 
theoretical limits of clear-sky solar radiation, and corrections were performed to ensure 28 
erroneous measurements due to dust or debris on the pyranometer window, non-level base 29 
plate, sensor miscalibration or drift, or obstructions were minimized (Allen, 1996). 30 

The gridded bias correction factors were developed using QA/QC-ed agricultural 31 
station data across the western U.S., including those shown in Figure 7. The process for 32 
developing and spatially interpolating bias correction factors is briefly described below, and 33 
is similar to the approach of Pearson et al. (2021). Post-processed agricultural station data 34 
were used to calculate ETo for each station, which was then compared with gridMET 35 
calculated ETo using an open-source software package, gridwxcomp, developed by DRI 36 
(Volk et al., 2023a). Ratios of mean monthly station ETo to gridMET ETo were computed for 37 
respective stations to estimate mean monthly bias factors for each station. Station to 38 
gridMET ETo bias ratios of mean monthly ETo were then used to create monthly bias 39 
correction surfaces by interpolating between stations using a kriging approach. The resulting 40 
mean monthly bias correction surfaces were multiplied by respective daily gridMET ETo 41 
estimates, resulting in bias-corrected ETo estimates that are representative of irrigated 42 
agricultural weather conditions. Supplemental Table 1 lists agricultural weather stations used, 43 
with metadata, and mean monthly ratios developed using the gridwxcomp software and used 44 
for spatial interpolation within and surrounding the Klamath River Basin. 45 
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 1 
Figure 7. Distribution of agricultural weather stations within and near the Klamath River Basin that 2 

were used to produce OpenET reference ET bias correction surfaces used for bias 3 
correction of gridMET ETo. 4 

 5 

Non-reference ET variables used by ET Demands including temperature, wind speed, 6 
and precipitation were not adjusted to station observations. The ET Demands calibration 7 
routine internally compensates for bias in individual variables such as air temperature 8 
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impacts on phenology, while the reference ET bias correction compensates for 1 
overestimation of atmospheric water demand and ET estimates. Furthermore, gridMET 2 
precipitation was used directly for BMM ETg, ET Demands effective precipitation, and 3 
wetland net ET estimates due to large uncertainty and known inconsistencies in station 4 
precipitation observations (Yang et al., 1998; Hanson et al., 2004). In support, Lundquist et 5 
al. (2019) found high-resolution atmospheric models such as PRISM (a primary input to 6 
gridMET) can better represent total precipitation across mountainous watersheds than 7 
observational gage networks.  8 

 9 

ET Demands  10 

The following text provides a brief overview of the ET Demands potential crop ET 11 
and daily soil water balance model used to estimate root zone effective precipitation (Prz) for 12 
agricultural areas throughout the Klamath Basin. Prz is the amount of gross reported 13 
precipitation less any surface runoff or deep percolation that resides in the soil and is 14 
available for consumption by evaporation or transpiration (Allen et al., 1998). While the 15 
primary variable of interest from ET Demands is Prz, supporting variables (internal to ET 16 
Demands) such as ETc, surface runoff, deep percolation, and NIWR are also discussed to 17 
provide additional information on model set-up, processing, and accuracy. KRRNFS ET 18 
Demands modeling supports irrigated agricultural net ET estimation. Non-irrigated, non-19 
agricultural simulations produced by the ET Demands modeling workflow such as rain-fed 20 
agriculture, wetlands, and open water were not used in additional KRRNFS modeling tasks. 21 
Detailed documentation of the ET Demands model and previous applications are described in 22 
Allen et al. (2005), Allen and Robison (2009), and Huntington et al. (2015). Specifics related 23 
to the Python ET Demands software and application can be found at: 24 
https://github.com/usbr/et-demands.  25 

 At the core of the ET Demands model is the FAO-56 dual crop coefficient model 26 
(Allen et al., 1998) (Figure 8). The ETc for each crop type was estimated at each gridMET 27 
cell (i.e., ET cell) using the FAO-56 dual crop coefficient equation:      28 

𝐸𝐸𝐸𝐸𝑐𝑐 =  (𝐾𝐾𝑠𝑠𝐾𝐾𝑐𝑐𝑐𝑐 +  𝐾𝐾𝑒𝑒)𝐸𝐸𝐸𝐸𝑜𝑜                  (1) 29 

where ETo is bias-corrected gridMET ASCE-PM grass reference ET, Kcb is the basal 30 
crop coefficient, and Ke is the soil surface evaporation coefficient. Kcb and Ke are 31 
dimensionless and range from 0 to 1.2 when used with ETo. Daily Kcb values over a season, 32 
commonly referred to as the crop coefficient curve, represent the ratio of actual crop ET to 33 
reference ET as a function of vegetation phenology and growth stages through time. Kcb 34 
values can vary from year to year depending on the start, duration, and termination of the 35 
growing season, all of which are dependent on temperature during spring, summer, and fall 36 
periods. The stress coefficient (Ks) ranges from 0 to 1, where 1 equates to no water stress, 37 
which is generally the case for fully irrigated crops during the irrigation season as opposed to 38 
rain fed crops or native vegetation that commonly experience some water stress. A daily soil 39 
water balance is used for simulating available water within the root zone and to estimate Ks 40 
within ET Demands. Ks is generally 1 when computing ETc for irrigated crops but can be less 41 
than 1 during winter when precipitation is low. ET Demands estimates of Ks during winter, 42 
for dormant covers of mulch and grass, can often be less than 1 since there is no irrigation 43 
specified for dormant non-growing season periods. A second daily soil water balance for the 44 

https://github.com/usbr/et-demands
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upper 0.1 m of soil is used in ET Demands to estimate Ke. The upper 0.1 m zone is assumed 1 
to be the only layer supplying water for direct evaporation from the soil surface. 2 

 3 

 4 
Figure 8. Conceptual diagram of the FAO-56 daily soil water balance used within ET Demands 5 

(modified from Allen et al., 2006).  6 

 7 

The dual crop coefficient approach allows for separate accounting of transpiration 8 
and evaporation to better quantify evaporation from precipitation and simulated irrigation 9 
events. Separate accounting of evaporation and transpiration also allows for year-round 10 
simulation of wintertime soil moisture gains that often offsets irrigation requirements during 11 
the beginning of the growing season. Accounting for wintertime soil moisture gains and 12 
losses is important for accurate estimation of Prz and the NIWR. The NIWR is defined as the 13 
amount of water needed in addition to precipitation to grow a non-water limited crop, 14 
otherwise known as the precipitation deficit, and is estimated within ET Demands as ETc 15 
minus Prz. Although Prz includes precipitation that is later evaporated and possibly not 16 
transpired by the crop, ETc includes evaporation of precipitation, therefore ETc minus Prz 17 
represents the NIWR rather than ETc minus the Prz portion that is effective toward 18 
transpiration only.  19 

 20 

ET Demands Model Discretization 21 

The KRRNFS area was divided into 4km grid cells (i.e., ET Cells) based on the 22 
gridMET weather dataset (Figure 9) (Abatzoglou, 2013). ET Cells included in this work were 23 
limited to those that contain irrigated croplands as defined by the field boundary dataset 24 
discussed in the “Methods” section. A total of 760 cells in the KRRNFS study area were used 25 
for extracting gridMET weather data, assigning crop types and soil properties, and 26 
parameterizing the ET Demands model across the KRRNFS area. 51 unique crop types were 27 
identified based on USDA CDL within agricultural areas of the KRRNFS from 2008–2020. 28 
For efficiency and model simplification, these 51 unique CDL classes were grouped into 8 29 
common and unique crop types supported by ET Demands (Supplemental Table 2). Only 30 
those 8 common crop types contained in each individual ET Cell were simulated within the 31 
ET Demands model. Each ET Demands crop type is assigned crop specific parameters 32 
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related to ET and soil water balance modeling such as rooting depth, growing season timing, 1 
Kcb phenology, water consumption, maximum allowable depletion, and runoff curve number. 2 

 3 

 4 

Figure 9. Distribution of ET Demands model grid and cells used to calibrate ET Demands crop 5 
parameters throughout the KRRNFS area. 6 

 7 

 8 
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Calibration cells distributed throughout the study area were used to control spatially 1 
varying crop parameters within ET Demands related to start, end, seasonal advancement of 2 
Kcb curves (discussed below), harvest, and senescence (Figure 9). Specific ET Demands crop 3 
parameters including 30-day average temperature (T30), cumulative growing degree day 4 
(CGDD), timing to effective full cover (EFC) or termination, and killing frost were adjusted 5 
at each calibration cell to simulate observed and documented crop phenology. Calibrated 6 
crop parameters were then spatially interpolated throughout the study area using an inverse 7 
distance weighting approach. Calibration cells were selected throughout the study area to 8 
control for spatial differences related to climate, topography, and management. The use of 9 
spatially distributed climate time series data is an advancement over previous irrigation water 10 
requirement and ET Demands studies and enables more accurate representation of spatially 11 
varying crop phenology and water use than is possible using point weather station or coarse 12 
scale climate distributions.  13 

 14 

ET Demands Soils Data and Simulated Runoff 15 

Soil attributes required for ET Demands parameterization were obtained from the 16 
NRCS State Soil Geographic (STATSGO) database (USDA-NRCS, 1991). STATSGO is a 17 
spatial soils GIS database and contains physical soil attributes required to estimate soil water 18 
holding and infiltration parameters of the ET Demands dual soil zone and root zone water 19 
balance and runoff modules. STATSGO attributes of available water capacity (AWC) and 20 
sand, silt, and clay fractions were used to estimate spatial distributions of total evaporable 21 
water and readily evaporable water used in the surface soil layer water balance, and total 22 
available water and readily available water were used in the root zone water balance. These 23 
parameters affect the simulation of irrigation timing and depth, evaporation losses from soil, 24 
deep percolation from root zones, antecedent soil moisture, and simulated runoff from 25 
precipitation. Soil attributes for AWC and sand, silt, and clay fractions were averaged over 26 
152-cm depths and were then intersected with irrigated crop land areas and spatially 27 
averaged and attributed for each ET Cell (Figure 10).  28 

Runoff is simulated within ET Demands based on a modified version of the USDA-29 
NRCS curve number (CN) approach (USDA-NRCS, 1998). The modified CN approach 30 
within ET Demands uses soil properties, crop type, daily precipitation depth, and soil water 31 
balance and antecedent soil moisture conditions within ET Demands. The CN hydrologic soil 32 
groupings were determined from spatially averaged percent sand, silt, and clay fractions over 33 
agricultural areas within each model grid cell in the study area. The CN hydrologic groupings 34 
of A, B, and C were estimated based on common percent composition thresholds: if sand is 35 
greater than 50% then the type is A, if clay is greater than 40% then the type is C, otherwise 36 
the type is B. Antecedent soil water content impacts the CN value due to the dependency of 37 
soil water content on unsaturated hydraulic conductivity and infiltration. To approximate soil 38 
water content effects, the CN value is adjusted according to the estimated soil water content 39 
prior to any precipitation. Adjustment of CN values is based on the approach of USDA-40 
NRCS (1998) and Allen (1998) for dry (ASC I) and wet (ASC III) conditions. Expressions 41 
by Hawkins et al. (1985) are utilized within ET Demands to scale CN values in between dry 42 
and wet conditions according to antecedent soil water contents. 43 

 44 
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 1 
Figure 10. Distribution of KRRNFS area soil AWC from the STATSGO dataset. 2 

 3 

 4 

ET Demands Crop Coefficients 5 

For this study, Kcb curves outlined in Allen and Robison (2009) and Huntington et al. 6 
(2015) were adopted for the application of ET Demands. The Klamath NFS ET Demands 7 
model uses grass reference based Kcb curves congruent with ETo values representative of 8 
irrigated areas and those used by eeMETRIC. The Kcb curves are primarily traceable to 9 
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lysimeter-based Kcb curves of Wright (1982, 2001) and Reclamation’s AgriMet program. 1 
Three methods were used for simulating green-up, planting, EFC, harvest, and advancement 2 
of Kcb curves based on 1) normalized cumulative growing-degree-days (NCGDD) from 3 
planting or green-up to EFC, with this ratio extended until termination of the cropping 4 
period; 2) percent time from planting to EFC, with this ratio extended until termination; and 5 
3) percent time from planting to EFC and then number of days after full cover to termination. 6 
These approaches allow for crop specific crop stage and temporal interpolation of Kcb curves 7 
to be a function of temperature, such as T30, rather than specified or fixed calendar dates. 8 
Green-up and time to EFC is strongly impacted by short-term weather conditions, primarily 9 
by air temperature, soil temperature, and water availability. Planting dates for annual crops 10 
are affected by air temperature and soil temperature at seed depth. Because of these strong 11 
dependencies, thermal-based approaches such as CGDD are commonly used for defining 12 
planting and green-up dates, crop coefficient development and temporal interpolation, and 13 
transferring crop coefficients among regions (Sammis et al. 1985; Slack et al. 1996; Howell 14 
et al. 1997; Snyder et al. 1999; Wright 2001; DeTar 2004; Marek et al. 2006; Allen and 15 
Robison 2009). Functionality within ET Demands allows for variable timing of green-up, 16 
planting, EFC, harvest, and advancement of Kcb curves based on the weather and climate and 17 
offers increased accuracy in estimating potential crop water use given temporal and spatial 18 
climate variability. The simulation of temperature dependent growing season timing and crop 19 
development within ET Demands is a substantial improvement over traditional reference ET 20 
– crop coefficient applications and approaches that assume fixed dates and crop stages 21 
regardless of interannual climate variability. 22 

 23 

 24 

ET Demands Model Calibration 25 

The ET Demands model provides default crop coefficient and soil water balance 26 
parameters for each modeled crop type, however, calibration is needed to account for 27 
potential inaccuracies in climate and soils data, model components and assumptions (e.g., 28 
root depth and root growth functions, maximum allowable depletion (MAD) thresholds for 29 
simulated irrigations, antecedent soil moisture runoff CN function, etc.), and local 30 
management practices. Calibration of the 8 unique KRRNFS crop type parameters at 49 31 
calibration cells located in agricultural areas throughout the basin (Figure 9) was primarily 32 
based on typical and documented dates of growing season start, full cover, harvest, and end 33 
of season information obtained from local sources and previous studies (USDA-NASS, 2010; 34 
Huntington et al., 2015; OSU-COAREC, 2023). In addition, Landsat derived NDVI time 35 
series were developed for select crops and fields across primary calibration cells using 36 
Climate Engine (Huntington et al., 2017), and were used to calibrate crop coefficient season 37 
length, phenology, and harvest parameters (Figure 11). NDVI provides a measure of 38 
vegetation vigor and is directly related to plant productivity (Cihlar, et al., 1991). 39 
Comparisons were performed between NDVI and ET Demands simulated Kcb curve 40 
phenology, and calibration parameters were adjusted to minimize differences in simulated 41 
crop phenology timing and stage. A comparison of NDVI and secondary calibration was not 42 
performed for all crop types and calibration cells and instead used to validate primary 43 
calibration based on typical and documented growing season and phenology dates and aid in 44 
calibration for areas where no information or local knowledge was available.  45 
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Crop specific parameters calibrated at defined calibration cells were spatially 1 
interpolated using inverse distance weighting throughout the model domain to account for 2 
spatial differences in temperature and crop phenology relationships as well as crop 3 
management. Spatially distributed calibration parameters were mapped to all ET Demands 4 
ET Cells and then used for calibrated ET Demands simulations. Figure 11 illustrates 5 
calibrated ET Demands model simulation of grass hay Kcb for a field near Copco Lake, CA, 6 
and shows generally good agreement between Kcb and Landsat NDVI. Green-up occurs in 7 
early April, reaching full cover in early June, and mid-season cutting occurs in early July, 8 
followed by grazing operations and reduced productivity for the remainder of the season. 9 
Similarly, Figure 12 shows Landsat NDVI and ET Demands simulated Kcb for an alfalfa hay 10 
field near Merrill, OR. ET Demands simulated Kcb growing season timing agrees well with 11 
Landsat NDVI, and observed alfalfa harvest dates are also simulated well.  12 

 13 

 14 
Figure 11. Time series comparison of Landsat derived NDVI and ET Demands simulated Kcb for 15 

grass hay crop in ET Cell 564161 near Copco Lake, CA. 16 

 17 



 

 
25 

 1 
Figure 12. Time series comparison of Landsat derived NDVI and ET Demands simulated Kcb for 2 

alfalfa hay crop in ET Cell 565566 outside of Merrill, OR. 3 

 4 

Variability in crop phenology within ET Demands is primarily a function of air 5 
temperature. For example, cooler spring temperatures will result in later green-up and slower 6 
crop development, while warmer temperatures will result in earlier green-up and more rapid 7 
progression to EFC and harvest. ET Demands calibration and simulated crop phenology 8 
patterns are weather and climate dependent and reflect general management practices, and 9 
therefore do not represent crop stages and phenology for all fields. Individual crops and 10 
fields will vary, sometimes to a large degree, due to crop management practices, weather, 11 
water shortage, crop stress and other factors. However, general agreement of simulated crop 12 
stage and phenology green-up and senescence timing improves accuracy of subsequent 13 
calculations such as Prz, NIWR, and estimation of agricultural net ET through the combined 14 
use of ET Demands and satellite estimates of ETa. Use of remote sensing ET models is 15 
needed to capture field scale spatial and temporal variability not obtainable with weather-16 
based crop coefficient models such as ET Demands. 17 

 18 

Agricultural and Wetland ET 19 

eeMETRIC Produced with OpenET 20 

ETa for agricultural areas was estimated in this study using a combination of satellite 21 
data and reference ET. While traditional reference ET and crop coefficient approaches are 22 
useful for estimating ETc under well-watered and stress-free conditions, satellite remote 23 
sensing approaches are currently the most feasible and accurate for estimating field-scale ETa 24 
over large areas and time periods (Fisher et al., 2017; Anderson et al., 2012). OpenET is a 25 
cloud-based processing platform and web application developed to efficiently produce and 26 
access field-scale ET data over large areas using a combination of Landsat satellite and 27 
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gridded reference ET data (Melton et al., 2022). Landsat is ideal for field-scale ETa 1 
estimation as it provides 30m resolution optical and thermal data at 8–16-day return intervals. 2 
Furthermore, Landsat's long-term data record since 1984 can observe spatial and temporal 3 
variations in crop phenology, water stress, and agricultural management practices (e.g., crop 4 
development and senescence, water shortage and deficit irrigation, harvests) (Tasumi et al., 5 
2005; Cammalleri et al., 2014). OpenET estimates daily ETa based on pixel-level temporal 6 
linear interpolation of EToF values for clear sky conditions, enabling time integration and 7 
summaries of monthly and annual ETa estimates. More information on the background and 8 
methods of OpenET can be found at https://openetdata.org/methodologies/.  9 

Detailed accuracy assessments of OpenET model ensembles at micrometeorological 10 
flux stations show good skill in predicting monthly ETa for agricultural lands (slope=0.86-11 
1.02, r2=0.89-0.94, MAE=15.5-21.6 mm/mo, RMSE=20.9-27.4 mm/mo, n=1,307, 12 
stations=23) (Melton et al., 2022). Technical aspects of the OpenET initiative are being led 13 
by DRI, National Aeronautics and Space Administration (NASA), and university partners 14 
with in-kind support from GEE, and includes scientists and software engineers behind many 15 
of the most prominent and commonly used models for calculating ET from satellite and 16 
weather data. Given DRI’s role in leading OpenET model integration, data production, and 17 
post-processing, use of the OpenET platform for historical ETa data production was ideal for 18 
the 1985–2020 portion of the study period.  19 

Of the 6 models included in OpenET, eeMETRIC was selected for estimating 20 
agricultural ETa in this study for the following reasons: 1) local compute and cloud-based 21 
versions of METRIC have demonstrated consistent performance in estimating ETa for 22 
croplands under well-watered and deficit irrigation conditions in similar semi-arid and arid 23 
environments (Huntington et al., 2018; Huntington et al., 2022; Volk et al., 2023c); 2) is 24 
widely used across CONUS and has been used in previous research and water management 25 
decisions in the Klamath River Basin (Allen et al., 2015; Cuenca, 2013; Snyder et al., 2012; 26 
Zhao et al., 2015); and 3) automated calibration and data production using GEE enables 27 
efficient, large scale assessment in space and time (Kilic et al., 2021; Allen et al., 2013).  28 

The OpenET platform was used to execute eeMETRIC and daily time integration 29 
models across all Landsat images acquired over the study area for the period of 1985–2020. 30 
Monthly ETa images at 30m spatial resolution were spatially averaged to all field boundary 31 
polygons to produce geodatabase attributes of field-scale ETa. Monthly net ET was computed 32 
on an individual field level within the geodatabase by subtracting respective ET Demands 33 
monthly Prz estimates from monthly ETa estimates.  34 

Deconfliction of Open Water Evaporation and Agricultural Evapotranspiration 35 

Significant land use changes in the vicinity of Upper Klamath Lake took place during 36 
the period of July 2006 to November 2008 when agricultural lands on the Williamson River 37 
Delta were restored to wetland, thereby altering the configuration of the lake (Erdman, 38 
Hendrixson, and Rudd, 2011). This change in Upper Klamath Lake was accounted for by 39 
TSC in the open water tech memo (Mikkelson, 2023), which describes extents and rates of 40 
open water evaporation for the Klamath River Basin for the study period. The processes of 41 
ET and open water evaporation are similarly constrained by the atmospheric demand for 42 
water as described by reference ET (ETo) and thus estimates of evaporation rates calculated 43 
with the Daily Lake Evaporation Model (DLEM) should be similar in magnitude to the ET 44 

https://openetdata.org/methodologies/
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rates produced by eeMETRIC for these areas of wetland inundated with shallow water; 1 
however, it was necessary to minimize the spatial and temporal overlaps of calculated ET 2 
and open water evaporation. 3 

Agricultural field boundaries developed for this study depict the maximum extent of 4 
agriculture within the basin for the period of study and were held static and fixed throughout 5 
the study period. These boundaries were frequently digitized using linear, manmade features 6 
such as roads, fence lines, and levies as reference. This use of levies in the creation of 7 
agricultural field boundary data resulted in the boundaries having good agreement with 8 
Upper Klamath Lake for the period of 1980–2006. To minimize the spatial and temporal 9 
overlap of estimates developed from the DLEM and eeMETRIC for the period following the 10 
restoration of the Williamson River Delta, field boundary summaries of eeMETRIC were 11 
post processed. Spatial statistics were performed to characterize the overlap in open water 12 
extents and individual agricultural field boundaries. For agricultural polygons that 13 
overlapped with TSC open water extents by ≥50% for a given period, ET and net ET for the 14 
associated periods were overwritten with zero values.  15 

 16 

Pre-1985 ETa  17 

The modern archive of Landsat satellite data began in March of 1984, when the 18 
Landsat 5 satellite began acquiring regular optical and thermal observations of the Earth’s 19 
surface. To estimate ETa prior to the operation of Landsat 5, an analog approach was 20 
developed using monthly fractions of grass reference ET (EToF) (i.e., eeMETRIC derived 21 
crop coefficients) calculated for the period of 1985–2020, which were applied to year-22 
specific ETo. Bias-corrected gridMET ETo data produced by DRI and OpenET from 1979–23 
2020 provided consistent estimates of ETo for the full study period. Monthly ETa estimates 24 
for the pre-1985 period were calculated as follows: 25 

𝐸𝐸𝑇𝑇𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ_𝑜𝑜𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
=  𝐸𝐸𝐸𝐸𝑜𝑜𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ ∗  𝐸𝐸𝑇𝑇𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ_𝑜𝑜𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (7)   26 

where ETa month_of_interest is the analog estimated ETa for the month of interest, 27 
EToFanalog_month is the month specific EToF from the analog water year, and ETo month_of_interest 28 
is the gridMET bias-corrected ETo value for the pre-1985 month of interest. Analog ET 29 
estimates were computed at the field level within the geodatabase, based on spatially 30 
averaged EToF and ETo values derived from eeMETRIC and bias-corrected gridMET data, 31 
respectively. 32 

Analog months were identified and selected on a water year (Oct–Sept) basis using 33 
the Klamath Normalized Wetness Index (NWI) developed by Larry Dunsmoor of Confluence 34 
Resource Consulting (L. Dunsmoor, personal communication, August 17, 2022). The 35 
Klamath NWI provides information on relative water availability throughout the region using 36 
historical water level, streamflow, and precipitation information. Use of monthly EToF values 37 
from similarly wet years accounts for general patterns related to water availability for 38 
irrigation, while the use of monthly ETo accounts for evaporative demands for the pre-1985 39 
period. Table 2 provides a summary of the water year specific analog year assignments used 40 
to estimate monthly ETa for the pre-1985 period. The monthly eeMETRIC data produced 41 
with OpenET begins in March 1984; however, spatial and temporal coverage of Landsat data 42 
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was limited from March through May of 1984 due to cloud cover and infrequent image 1 
acquisitions. To avoid data gaps during this period, a mix of analog and eeMETRIC field-2 
level ETa estimates were used. Similar to the post-1985 period, monthly net ET for the pre-3 
1985 period was computed at the field level within the geodatabase by subtracting ET 4 
Demands monthly Prz estimates from respective analog ETa estimates.  5 

 6 

 7 

Table 2. Water year and analog water year pairs identified based on the Klamath NWI and used for 8 
estimating field-level monthly EToF and ETa for study years 1980–1985. 9 

Water Year Analog 
Water Year Comment 

1980 2001 Oct-Dec analog estimates; Jan-Sept 1980 not used in KNFS 
modeling 

1981 2001 Oct-Sept analog estimates 

1982 2006 Oct-Sept analog estimates 

1983 1999 Oct-Sept analog estimates 

1984 1999 Jan-Feb analog estimates; Mar-May 1984 (mix of analog and 
eeMETRIC due to cloud masking); Jun-Sep eeMETRIC 

1985 OpenET Oct-Sept OpenET data 

 10 

 11 

Wetland ETa and Net ET 12 

Wetlands within the Klamath River Basin have demonstrated variability in 13 
composition, both spatially and temporally, with some areas subjected to reoccurring 14 
inundation of water. Due to standing water causing negative VI values and thereby 15 
confounding a regression-based approach relying on NDVI, the Beamer-Minor Method was 16 
deemed inappropriate for largescale use on wetland landcover within the Klamath River 17 
Basin. ETa for wetlands was estimated using eeMETRIC, which has demonstrated good 18 
performance in wetlands within the region (Melton et al., 2022; Volk et al., 2023b) and 19 
compared well to eddy-covariance data collected by Stannard et al. (2013). Monthly net ET 20 
estimates for wetlands were calculated by subtracting the respective monthly total 21 
precipitation with the assumption that all precipitation discharges through ET (i.e., 100% of 22 
the total precipitation is effective) and none of the precipitation runs off or contributes to 23 
recharge. 24 

 25 

Groundwater Discharge from Phreatophytes and Wetland ET 26 

Groundwater discharge in the Klamath River Basin occurs primarily via ETg from 27 
phreatophyte vegetation and bare soil evaporation within valley floor shrubland, wetlands, 28 
and spring discharge areas. Knowledge about pre-development (i.e., pre-Project) and 29 
contemporary extents of these areas is important for the development of representative ETg 30 
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rates and volumes for different time periods of interest. The largest area of phreatophytes 1 
within the Klamath River Basin is comprised of shrublands, and while shrubland 2 
phreatophytes exhibit relatively low rates of ETg, their large contributing areas equate to 3 
large groundwater discharge volumes (Nichols, 2000; Smith et al., 2007; Beamer et al., 4 
2013). The summaries developed of groundwater discharge from phreatophytic and wetland 5 
ET are an input to the KRRNFS and were used by the TSC to develop ET rates of natural 6 
landcover for pre-development conditions. 7 

 8 

Phreatophyte ETg Rates 9 

Researchers at DRI and the USGS have conducted extensive research and developed 10 
methodologies focused on estimating phreatophyte ETg and groundwater discharge. The 11 
USGS has frequently implemented an “ET unit” approach for uniformly spatially distributing 12 
micrometeorological station-based estimates of ETg rates across respective ET units to 13 
estimate volumes of groundwater discharge. The approach is based on uniformly applying 14 
average annual ETg rates from previous studies to ET unit areas of similar vegetation and soil 15 
characteristics to estimate the volumes. ET units are estimated using ranges of average 16 
vegetation index (VI) values computed from mid-summer Landsat satellite imagery (Smith et 17 
al., 2007; Garcia et al., 2022). Alternatively, several studies led by DRI researchers have 18 
estimated phreatophyte ETg rates by developing and applying statistical relationships 19 
between VI’s and micrometeorological station-based water year ETa, ETg, PPT, and ETo 20 
(Groeneveld et al., 2007; Beamer et al., 2013). Although these empirical statistical 21 
approaches enable transferability by accounting for local climate conditions and water supply 22 
and demand differences between station and study locations (i.e. PPT and ETo), past studies 23 
have typically relied on custom and different atmospheric correction approaches, and only 24 
used one or two mid-summer Landsat images both in developing and applying empirical 25 
relationships between VI’s and ETg.  26 

Phreatophyte ETg was calculated for the study period using the Landsat Collection 2 27 
archive (Crawford et al., 2023), gridMET weather data, and phreatophyte boundaries 28 
described in the previous section. Annual ETg rates were estimated using a revised version of 29 
the approach described by Groeneveld et al. (2007), Beamer et al. (2013), and Minor (2019). 30 
The approach, referred to as the Beamer-Minor method (BMM), uses water year total ETa 31 
observations derived from in situ micrometeorological and energy balance station data 32 
collected at 36 sites (54 site years; some sites with multiple years of ET data) from ten 33 
studies in the Great Basin (Reiner et al., 2002; Maurer et al., 2005; Moreo et al., 2007; 34 
DeMeo et al., 2008; Arnone et al., 2008; Allander et al., 2009; Garcia et al., 2015; Berger et 35 
al., 2016; Moreo et al, 2017; DeMeo, 2018) along with respective water year gridMET ETo 36 
and PPT estimates for each site.  37 

An energy balance closure (EBC) correction approach based on the energy balance 38 
ratio (EBR; ratio of the sum of turbulent fluxes to the sum of radiative fluxes), and similar to 39 
OpenET (Volk et al., 2023b) and FLUXNET (Pastorello et al., 2020) methodologies used for 40 
intercomparison and validation of satellite-based ET data, was used in the BMM approach to 41 
correct 39 site years of eddy covariance (EC) ETa data at the daily time step. The remaining 42 
15 site years of in situ ETa data were collected using the Bowen ratio (BR) energy balance 43 
method, which inherently forces closure and doesn’t require EBC corrections. The 44 



 

 
30 

application of EBC at daily time steps, as opposed to hourly or sub-hourly time steps, has 1 
been shown to reduce effects of soil-heat-flux measurement and storage inaccuracies 2 
(Leuning et al., 2012). Prior to EBC corrections, EBR values ranged from 0.62 to 1.18 with a 3 
mean EBR of 0.92 across all sites. Following EBC corrections, EBR values ranged from 0.98 4 
to 1.02 with a mean EBR of 1.01 across all sites. More details on processing and gap-filling 5 
steps are outlined in Volk et al. (2023a) are provided in the open-source flux-data-qaqc 6 
GitHub repository (https://github.com/Open-ET/flux-data-qaqc) (Volk et al., 2021).  7 

After EBC corrections and normalization of the in situ ETa data for each site year 8 
(discussed below), normalized ETa (ET*) was paired with respective Landsat Collection 2 9 
surface reflection derived NDVI values for source areas around each micrometeorological 10 
station to develop a least-squares linear regression model (Figure 13). Source area NDVI 11 
values for each site year were computed as the spatial average (100-meter buffer) of the 12 
respective mid-summer median NDVI composite. The NDVI – ET* regression of the 13 
approach of BMM is advantageous given that variations in vegetation characteristics, 14 
evaporative demand, and precipitation are accounted for both in deriving and applying the 15 
regression, and therefore enables transferability without having to collect additional in situ 16 
ETa data in the local area of application. With the ET Unit approach, in situ measurements of 17 
ETg must be made for various ET Units in the local area of application, or assumed ETg rates 18 
must be specified. 19 

 20 

 21 

Figure 13. NDVI – ET* data pairs for 54 site years of eddy covariance and Bowen ratio flux tower 22 
stations used in the BMM. Symbols indicate which ET study the data point represents. 23 
The best-fit line and prediction equation are provided. 24 

 25 

https://github.com/Open-ET/flux-data-qaqc
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NDVI was chosen over other VI’s (e.g., enhanced vegetation index, modified soil-1 
adjusted vegetation index) because it is a relatively simple formulation, is frequently used 2 
among the scientific community, and has been shown to perform well for quantifying 3 
vegetation cover in semi-arid environments (McGwire et al., 2000; Wu, 2014). NDVI 4 
incorporates both red and near infrared (NIR) spectral bands and is defined as: 5 
 6 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  = (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)    (2) 7 

   where NIR is the near infrared surface reflectance and RED represents the red surface 8 
reflectance sourced from Landsat satellite data. The USGS converts the Landsat 5 Thematic 9 
Mapper (TM), the Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and the Landsat 8 10 
Operational Land Imager (OLI) top-of-atmosphere reflectance to surface reflectance using 11 
the Landsat ecosystem disturbance adaptive processing system (LEDAPS) (for Landsat TM 12 
and ETM+) and Landsat Surface Reflectance Code (LaSRC) (for Landsat 8 OLI) 13 
atmospheric correction algorithms (Landsat 8-9 Collection 2 Level 2 Science Product Guide | 14 
U.S. Geological Survey, 2022; Schmidt et al., 2013). Due to slight differences in the Landsat 15 
sensor bandwidths, cross-sensor calibration between Landsat TM, ETM+, and OLI was 16 
performed using equations developed by Huntington et al. (2016).  17 

The mid-summer period from June 1st through September 15th was selected for temporally 18 
compositing Landsat NDVI imagery since precipitation and influences from non-19 
phreatophytic vegetation are typically low and phreatophyte vegetation vigor is more 20 
pronounced during this period. Extensive cloud masking using Landsat CFmask products 21 
(Foga et al., 2017) and additional quality assurance and quality control (QA/QC) procedures 22 
were applied to ensure accurate Landsat imagery was considered in the analysis. The QA/QC 23 
steps involved computations of supplementary VI’s, water indices (e.g., normalized 24 
difference water index), albedo, and LST to help identify and filter out poor quality images. 25 
After QA/QC steps were finished, normalized ET* for a given water year defined as: 26 

𝐸𝐸𝑇𝑇∗ =
𝐸𝐸𝐸𝐸𝑎𝑎  −  𝑃𝑃𝑃𝑃𝑃𝑃
𝐸𝐸𝐸𝐸𝑜𝑜  −  𝑃𝑃𝑃𝑃𝑃𝑃

 (3) 27 

was estimated using the NDVI – ET* linear regression equation: 28 

𝐸𝐸𝑇𝑇∗ = 𝛽𝛽0  +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (4) 29 

where ETa is the water year total actual ET in millimeters per year (mm/yr), PPT is the water 30 
year total precipitation (mm/yr), ETo is the water year total grass reference ET (i.e., 31 
evaporative demand) (mm/yr), and β0 and β1 are the best-fit regression coefficients of -0.035 32 
and 1.1097, respectively. Applying equation 4 to mid-summer NDVI resulted in estimates of 33 
mean ET* for phreatophyte vegetation with upper and lower 90th percentile confidence and 34 
prediction interval estimates included (Table 3). The confidence interval (CI) represents the 35 
degree of confidence in the mean ET* estimated for a given NDVI observation, whereas the 36 
prediction interval (PI) signifies the degree of confidence for a new NDVI and ET* data pair 37 
to fall within the interval at the 0.10 significance level (i.e., 90th percentile). The PI is wider 38 
than the CI since it accounts for the uncertainty in estimating the population mean ET*, plus 39 
the random variation of individual observations (Figure 14).  40 
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 1 
By rearranging equation 3, water year ETa was estimated as: 2 

𝐸𝐸𝐸𝐸𝑎𝑎  =  (𝐸𝐸𝐸𝐸𝑜𝑜  −  𝑃𝑃𝑃𝑃𝑃𝑃)𝐸𝐸𝑇𝑇∗  +  𝑃𝑃𝑃𝑃𝑃𝑃 (5) 3 

where water year total PPT and ETo was estimated using gridMET. Water year ETg is then 4 
estimated by subtracting the water year PPT from the estimated water year ETa: 5 

𝐸𝐸𝐸𝐸𝑔𝑔  =  (𝐸𝐸𝐸𝐸𝑜𝑜  −  𝑃𝑃𝑃𝑃𝑃𝑃)𝐸𝐸𝑇𝑇∗  (6) 6 

Water year ETg was estimated for phreatophyte vegetation for the 1985–2020 study 7 
period using the equations above with the following steps: 1) spatially average gridMET 8 
water year PPT and ETo for phreatophyte boundaries, 2) compute spatially distributed NDVI 9 
using Landsat Collection 2 surface reflectance data, 3) compute spatially distributed ET*, 10 
ETa, and ETg rates, 4) export annual ETg rate rasters at 30m resolution, 5) spatially average 11 
ET*, ETa, and ETg rates, and 6) multiply spatially averaged ETg rates by the phreatophyte 12 
area to estimate ETg volumes. All of the above steps were applied to each year of the study 13 
period using all QA/QC-ed June 1st through September 15th Landsat imagery. The annual 14 
ETg rasters resulting from step 4 were further disaggregated to seasonal time steps by first 15 
computing the water year ETg/ETo ratios, and then multiplying the ETg /ETo ratio by the 16 
seasonal ETo. For each water year, the four seasons are defined as October through 17 
December, January through March, April through June, and July through September.  18 

 19 

Figure 14. NDVI – ET* data pairs with the best-fit line and upper/lower 90th percentile CI and PI 20 
bands. 21 

 22 

 23 
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Annual ETg rates were disaggregated to seasonal time steps so that ETg rates for 1 
phreatophytes could be incorporated into the KRRNFS groundwater modeling framework 2 
and used for calibration. The period prior to 1985 was not estimated since the primary 3 
purpose for estimating ETg was for groundwater model calibration, and the period of 1985–4 
2020 is adequate for both calibration and validation. 5 

 6 

Table 3. β-Coefficients of the NDVI – ET* predictive equation 90th percentile CI, and PI for 7 
estimating ETg. 8 
Equation β0 β1 
Linear (model) -0.035 1.1097 
Lower 90% CI band -0.0477 1.0544 
Upper 90% CI band -0.0223 1.165 
Lower 90% PI band -0.172 1.0936 
Upper 90% PI band 0.102 1.1258 

 9 

RESULTS AND DISCUSSION 10 

The following section describes and highlights results from the primary focus areas of 11 
the ET study, field boundary digitizing and irrigation system type attribution, irrigation status 12 
mapping and attribution, ET Demands modeling results, agricultural ET, wetland ET, 13 
phreatophyte ET, and field boundary summaries.  14 

 15 

Field Boundary Digitizing and Irrigation System Type Attribution 16 

The KRRNFS field boundary digitizing effort resulted in 12,930 unique and 17 
attributed features. Field boundary attributes associated with agricultural field boundaries and 18 
delineated wetlands are described in detail in Appendix 2, and include unique ID, military 19 
grid reference system ID, state, acres, year, irrigation system type, irrigation status, and 20 
growing season mean Landsat NDVI. The delineation of maximum irrigated extent for the 21 
1985–2020 period resulted in the addition of features not present in field boundary datasets 22 
that were representative of current conditions. New polygons were most often digitized 23 
where irrigation occurred and since ceased, most often due to changes in land use as 24 
conversion from agricultural to municipal and residential uses. The inclusion of these 25 
previously irrigated lands in this dataset was necessary for the analysis of long-term 26 
consumptive use. Agricultural fields retired from agricultural production for the purposes of 27 
habitat restoration often maintain visual similarities with intermittently irrigated agricultural 28 
fields, and thus were retained in the dataset. 29 

The attribution of irrigation system type for all agricultural field boundary features 30 
was an iterative, multi-agency effort, including geospatial analysts from both DRI and TSC. 31 
Irrigation type attribution (Table 1) was reviewed for completeness and quality, ensuring that 32 
multiple GIS technicians evaluated the attribution for each feature. The irrigation system type 33 
attribution effort resulted in per year attribution of irrigation system type for all fields for the 34 
period of 1995–2020.  35 
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IrrMapper 1 

IrrMapper binary class values were attributed to field boundaries at annual time steps. 2 
Spatially averaging binary class values resulted in field boundary attribute values ranging 3 
from 0 to 1. Field boundary IrrMapper binary class fractions may be used to assess 4 
uncertainty and scale irrigation consumptive use volumes as additional post-processing 5 
analyses. Visual assessment of IrrMapper results indicated robust performance in areas of 6 
well-developed agriculture when compared to historical aerial imagery and growing season 7 
maximum Landsat NDVI, and field boundary delineations (Figure 15). This high degree of 8 
performance appears as irrigated pixels are predominantly constrained to field boundaries, 9 
with clear patterns of variation within geometries corresponding to likely patterns of intra-10 
field partitioning combined with varied management or irrigation activity. 11 

 12 

 13 
Figure 15. Overview of an agricultural area near Tulelake, CA where IrrMapper exhibits a high 14 

degree of accuracy. 15 

 16 

Performance of IrrMapper was limited and less robust in agricultural areas of 17 
diversified pasture, where shallow groundwater, subirrigation, riparian corridors, and wetland 18 
areas are common (Figure 16). These areas are often classified as “herbaceous wetland” 19 
within the CDL product, yet are commonly cultivated and supplementally irrigated for 20 
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pasture grass and grazing. IrrMapper classes for these areas are commonly “wetland/water,” 1 
which is considered an “unirrigated” class based on IrrMapper methodology. Additionally, 2 
these areas classified as “unirrigated” proved difficult for GIS analysts and project specialists 3 
to identify if lands were irrigated and cultivated due to lack of irrigation infrastructure and 4 
spatial water right information. Further investigation and refinement of IrrMapper 5 
wetland/water classifications based on local knowledge and water right information could be 6 
considered to refine irrigation consumptive use assessments and modeling activities.  7 

 8 

 9 
Figure 16. Overview of an agricultural area near the Sprague River in the vicinity of Beatty, OR 10 

where IrrMapper “wetland/water” classifications include agricultural fields that may be 11 
flood irrigated or subirrigated and cultivated for pasture grass or grazed.  12 

 13 

ET Demands 14 

The KRRNFS ET Demands model produces daily time series output of ETc, NIWR, 15 
surface runoff, deep percolation, and Prz assuming well-watered, potential crop conditions. 16 
While not used directly by the KRRNFS, accurate simulation of ETc, NIWR, surface runoff, 17 
and deep percolation is required for accurate soil water balance modeling and Prz estimation. 18 
Figure 17 illustrates an example time series of ET Demands output for a grass hay crop 19 
located south of Klamath Falls, OR. The grass hay simulation initiates the start and end of the 20 
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growing season in mid-April and mid-October, respectively. Irrigation events at the start and 1 
end of the season are typically small and spread out compared with mid-summer irrigation 2 
due to lower crop water demand, carry forward winter and spring soil moisture storage, and 3 
spring precipitation events. Elevated values of Kc and ETc are simulated after wetting events 4 
due to soil evaporation losses (i.e., evaporation from soil beneath the canopy or in between 5 
plants following irrigation and precipitation) (Allen et al., 2009). Time series datasets shown 6 
in Figure 17 were produced for each unique grid cell and crop type combination.  7 

 8 

 9 

Figure 17. Example ET Demands simulation for a grass hay crop in cell 566947 south of Klamath 10 
Falls, OR. 11 

 12 

For this work, the primary output variable of interest was Prz. Estimates of Prz were 13 
subtracted from OpenET eeMETRIC produced ETa to estimate net ET for agricultural land. 14 
Figure 18 illustrates the spatial distribution of average annual ET Demands Prz to total PPT 15 
fractions for the period of 1980 to 2020. The spatial distribution illustrates areas of high and 16 
low Prz to PPT fractions, which is related to evaporative demand, and simulated partitioning 17 
of precipitation into runoff and deep percolation. Figure 19 illustrates the 1980–2020 average 18 
annual PPT distribution where lower Prz to PPT fractions generally occur in areas of high 19 
elevation where larger annual PPT amounts correspond with less evaporative demand, and 20 
increased surface runoff and deep percolation. Higher Prz to PPT fractions are simulated in 21 
areas with relatively low PPT and higher evaporative demand and correspond with valley 22 
floor areas along the California-Oregon border near Tule Lake.  23 
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 1 
Figure 18. Average annual Prz to PPT fraction for grass hay in estimated using ET Demands for the 2 

period of 1980–2020. 3 
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 1 
Figure 19. Average annual PPT for each ET Demands model grid cell for the period of 1980–2020. 2 

 3 

Figure 20 illustrates cumulative daily ETc, Prz, NIWR, and irrigation simulated for 4 
grass hay for the year 2020. Cumulative ETc and Prz are similar from January until the start of 5 
the growing season until crop water demands increase and are met through irrigation. 6 
Irrigation events simulated within ET Demands fully saturate the soil profile with an 7 
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assumed 10% loss to deep percolation. Although the growing season starts in mid-April, the 1 
first irrigation is not simulated until early May due to carry forward soil moisture storage of 2 
wintertime precipitation. Also, note the decrease in NIWR after the end of the growing 3 
season, indicating storage of precipitation.  4 

 5 

 6 

Figure 20. Time series plot of cumulative ET, Prz, NIWR, and Irrigation for a grass hay crop in ET 7 
Cell 566947 south of Klamath Falls, OR. Gray shading represents the estimated growing 8 
season period with active irrigation.  9 

 ET Demand Prz estimates are a function of crop type, water demand, precipitation 10 
timing and amount, and soil type. Prz estimates developed in this study are intended to be 11 
used for estimating ET of applied irrigation water and ET from PPT. The complete ET 12 
Demands data package includes daily time series of all variables illustrated in Figure 20 for 13 
each unique agricultural crop–grid cell combination throughout the KRRNFS area from 14 
1980–2020. ET Demands model daily time series output was aggregated to monthly totals for 15 
pairing with OpenET eeMETRIC ETa estimates and estimation of agricultural net ET. Final 16 
Prz results are summarized in the monthly field-level ET database which was provided to 17 
USBR and described in detail in Appendix 3. The ET Demands daily time series data 18 
package is described in detail in Appendix 5. 19 

 20 
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Agricultural and Wetland ET 1 

For agricultural areas within the Klamath River Basin, calculations of monthly ETa, 2 
EToF, ETo, PPT, Prz, and net ET rates and volumes were produced and summarized at field 3 
scale. Results were compiled into a data package that contains spatial and temporal data 4 
summaries for field boundaries. Appendix 3 details the file structure, variable definitions, 5 
units, and spatial and temporal extents of the data summaries.  6 

 7 
Figure 21. Spatial distribution of long-term (1985–2020) average annual ET for agriculture, wetlands, 8 

and pasturelands within the KRRNFS area. 9 

 10 

Similarly, calculations of monthly ETa, EToF, ETo, PPT, Prz, and net ET rates and 11 
volumes were produced and summarized for existing wetland areas around Upper and Lower 12 
Klamath Lakes, the Klamath Marsh, the Sycan Marsh, Tule Lake, and the Sprague river. 13 
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Results were compiled into a data package that contains spatial and temporal data summaries 1 
for delineated wetland polygons. Appendix 3 details the file structure, variable definitions, 2 
units, and spatial and temporal extents of the data summaries. Figure 21 illustrates the long-3 
term average annual ET for the period of 1985–2020.  4 

 5 

Comparison with Previous Estimates 6 

To intercompare and validate ET data developed and summarized in this report, 7 
previous estimates of ET within the region were compiled and evaluated. Based on data 8 
quality and completeness, two comparison approaches were developed and described below. 9 

  10 

Comparison to Stannard et al. (2013) 11 

In a previous study conducted by the USGS, EC flux tower data were used to estimate 12 
ET for two wetland sites within the Upper Klamath Lake National Wildlife Refuge (NWR) 13 
during the period of May 2008 to September 2010 (Stannard et al., 2013). Landcover of these 14 
sites was comprised of a near monoculture of hardstem bulrush (Schoenoplectus acutus) for 15 
one site, while the other site consisted of a mix of vegetation characterized as 70% bulrush 16 
and 15% percent cattail (Typha latifolia). Daily estimates of ET produced by these two EC 17 
sites were compared against 29 days of eeMETRIC data produced on dates of Landsat scene 18 
acquisition, thereby minimizing error that could be introduced in the temporal interpolation 19 
of EToF in between Landsat images. Results of the intercomparison at the bulrush site are 20 
illustrated in Figure 22a and indicate good agreement between eeMETRIC and EC data 21 
(slope of 0.92, coefficient of determination (R2) of 0.88, and root mean square error (RMSE) 22 
of 0.81). The comparison between eeMETRIC and EC data for the mixed vegetation was 23 
similar in agreement with slope of 0.95, R2 of 0.87, and a RMSE of 0.83 (Figure 22b).  24 

 25 
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 1 
 2 

Figure 22. Comparison of OpenET eeMETRIC and EC flux tower station derived monthly ET from 3 
2008-05-01 through 2010-09-01 for the bulrush (a) and mixed vegetation (b) sites north 4 
of Upper Klamath NWR. 5 

 6 

 7 

ET+ METRIC 8 

The METRIC model was previously applied within the Klamath River Basin in 9 
multiple studies in which ET data were developed by the consulting firm ET+ (R. Allen, 10 
personal communication, March 16th, 2022, Allen & Snyder, 2011; Snyder et al., 2012; Zhao 11 
et al., 2015). These applications of METRIC relied on an alfalfa reference ET (ETr) dataset 12 
derived from ETr calculated from nearby agricultural weather stations and interpolated into a 13 
spatially explicit ETr surface. METRIC data were developed for the growing seasons (April–14 
October) of the years 2004, 2006, 2010, 2013, and 2014. These estimates of ET were 15 
produced for two Landsat scenes, Worldwide Reference System (WRS) path/row p45/r30 16 
and p45/r31.  17 

Comparisons of ET+ METRIC to OpenET eeMETRIC, revealed that ET+ calculated 18 
rates of ETa were greater than those produced by eeMETRIC. To isolate potential factors 19 
which could cause the disparity between calculated ET from the two models, an analysis of 20 
the three primary components of the ET calculation (ETa, ETo, and EToF) was performed. 21 
ET+ METRIC estimates of ETa were derived from ETr; therefore, it was necessary to create a 22 
common basis of comparison in the characterization of vegetation and land surface 23 
conditions represented in the term EToF. An EToF equivalent was produced by the following 24 
calculation: 25 
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𝐸𝐸𝑇𝑇𝑜𝑜𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐸𝐸𝑇𝑇𝑜𝑜𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗  𝐸𝐸𝑇𝑇𝐸𝐸𝐸𝐸+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐸𝐸𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (8) 1 

The creation of an EToF equivalent does not alter the calculations produced by ET+ 2 
but creates a metric useful for diagnostic purposes. Figure 23 “a”,”b”, and “c” illustrate 3 
comparisons of ETa, reference ET, and ET reference fraction respectively for a location in the 4 
Wood River, OR area. The comparison of ET+ METRIC to OpenET eeMETRIC in plot “a” 5 
indicates strong agreement between the two models when ET is least; however, divergence is 6 
more prominent at the highest rates of ETa. Figure 23b illustrates a difference between 7 
calculations of reference ET  used by the two models, which is consistent with two reference 8 
surfaces being used. Figure 23c illustrates a comparison between eeMETRIC EToF and 9 
METRIC EToF equivalent and indicates the primary source of divergence in values 10 
developed by eeMETRIC and METRIC. In this analysis, METRIC depicts much more robust 11 
vegetation vigor than is represented by eeMETRIC. These EToF equivalent values frequently 12 
exceeded 1.0 and reached a peak of 1.34 in May 2004. The R2 for this comparison was 13 
calculated as 0.17, indicating a low degree correlation between EToF values.  14 

The originator of both the METRIC and eeMETRIC models, Rick Allen, suggested in 15 
personal communication that an NDVI analysis could be applied to provide clarity on model 16 
disagreement (personal communication, March 23rd, 2022). For the site in Wood River, it 17 
was suggested that an NDVI consistently greater than 0.70–0.75 could support the ET+ 18 
METRIC results, whereas NDVI lower than the threshold may support the results produced 19 
by eeMETRIC.  20 

An analysis was conducted of ETa, EToF and EToF equivalents, and NDVI values for 21 
the years 2004, 2006, 2010, 2013, and 2014 (Figure 24). The years 2004, 2006, 2010, and 22 
2014 were similar in pattern, with the repeated divergence in peak rates of ET calculated by 23 
METRIC and eeMETRIC. The area-weighted average of NDVI for these years peaked at or 24 
slightly above the 0.75 threshold. April–October average rates of NDVI for this agricultural 25 
unit were observed as 0.62. The comparison of ET data for 2013 is of particular note, as 26 
agreement between the two models during the growing seasons indicates that the calibrations 27 
used by ET+ METRIC model were very similar to the automated calibration used in 28 
eeMETRIC. 29 
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 1 
Figure 23. Comparison of OpenET eeMETRIC and ET+ derived monthly ET (a), reference ET (b), 2 

and fraction of reference ET (c) for the growing season months (Apr–Oct) of 2004, 2006, 3 
2010, 2013, and 2014 at the actively irrigated KB_1987 field in the Wood River Valley 4 
north of Upper Klamath NWR. 5 

 6 

   7 

 8 
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 1 

 2 
Figure 24. Time series of OpenET eeMETRIC and ET+ derived ET and fraction of reference ET, and 3 

Landsat derived NDVI for the growing season months (Apr-Oct) of 2004(a), 2006(b), 4 
2010(c), 2013(d), and 2014(e) at the actively irrigated KB_1987 field in the Wood River 5 
Valley north of Upper Klamath NWR. 6 

 7 

As the NDVI-based analysis does not conclusively support the ET estimates of either 8 
implementation of the METRIC model, this comparison serves to illustrate the results that 9 
have been developed with the two methodologies. The analysis of the geometry KB_1987 in 10 
Wood River, OR, illustrated the widest divergence of the two models, while stronger 11 
agreement was observed in well-managed agricultural areas. Fields which demonstrated this 12 
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agreement were documented near Lower Klamath Lake, OR where for the purposes of analysis 1 
the field boundary of KB_8328 was selected for comparison. Monthly ETa rates from 2 
KB_8328 are illustrated in Figure 25a, where an R2 of 0.91 was calculated between 3 
eeMETRIC and ET+ METRIC. The difference in reference ET values used by the two 4 
models is attributable to the use of grass and alfalfa reference surfaces by the two models, 5 
resulting in ET+ METRIC using consistently higher rates of reference ET (Figure 25b). 6 
Figure 25c illustrates eeMETRIC producing higher EToF values at the lowest range, whereas 7 
ET+ METRIC calculates higher EToF for time periods when ET is greatest. For this location 8 
of comparison, ET+ METRIC produced a peak monthly EToF of 1.44 for the month of April 9 
2013, which was calculated as 1.04 by eeMETRIC. This observed difference is partly 10 
attributable to the use of ETr by ET+ METRIC versus ETo by eeMETRIC; however, 11 
variations in calibration methodologies may have exaggerated the difference in rats and 12 
volumes calculated by the two models. 13 

For consistency, Figure 26 a, b, c, and d illustrate the annual time series of ET, EToF, 14 
and NDVI for months April–October for the years 2004, 2006, 2013, and 2014 in the same 15 
fashion as was illustrated for KB_1987 in Wood River, OR. 16 

 17 

 18 
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 1 

 2 
Figure 25. Comparison of OpenET eeMETRIC and ET+ derived monthly (a) ET, (b) reference ET, 3 

and (c) fraction of reference ET for the growing season months (Apr–Oct) of 2004, 2006, 4 
2013, and 2014 at the actively irrigated KB_8328 field north of Lower Klamath Lake, 5 
OR. 6 

 7 

 8 
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 1 

 2 
 Figure 26. Time series of OpenET eeMETRIC and ET+ derived ET and fraction of reference ET, and 3 

Landsat derived NDVI for the growing season months (Apr–Oct) of (a) 2004, (b) 2006, 4 
(c) 2013, and (d) 2014 at the actively irrigated KB_8328 field north of Lower Klamath 5 
Lake, OR. 6 

 7 

It is important to note that the underlying data produced by Landsat has changed as 8 
OpenET makes use of Landsat Collection 2 (Landsat 8-9 Collection 2 Level 2 Science 9 
Product Guide | U.S. Geological Survey, 2022), which offers numerous improvements to 10 
radiometric calibration and data processing. The creation of Landsat Collection 2 data 11 
supersedes previous Collection 1 data, as it was created by reprocessing both new and 12 
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historic Landsat data. At the time of this reporting, the underlying scene-images used by ET+ 1 
to develop monthly, seasonal, and annual summaries of ET are not available for direct 1:1 2 
comparison. Discrepancies between eeMETRIC and the previous versions of the METRIC 3 
model may be attributed to the refinements of the METRIC model over the past decade, as 4 
well as the implementation and refinement of automated calibration methodologies which 5 
have been employed within eeMETRIC to produce reliable calibrations at scale. 6 

 7 

Phreatophyte ET 8 

Phreatophyte ET results from application of the BMM approach are summarized in 9 
tabular, raster, and GIS formats and are described in Appendix 4. Tabular summaries contain 10 
time series of spatially averaged annual ETa, ETg, ETo, and PPT rates; 90th percentile CI and 11 
PI ETa and ETg rates; and supplementary VI’s, water indices, LST, and albedo. Figure 27 12 
illustrates time series of annual ETg, ETa, ETo, and PPT rates for the Butte Valley estimated 13 
using the BMM approach from 1985–2020. Interannual variations in the annual ETg and ETa 14 
rates for phreatophyte shrublands in Butte Valley are largely controlled by variations in 15 
vegetation vigor, evaporative demand, and precipitation. Both annual and seasonal 30m 16 
resolution ETg rasters were developed for the extent of phreatophyte shrublands within the 17 
Butte Valley HUC-8. Figure 28 illustrates the spatial distribution of the long-term (1985–18 
2020) average annual ETg for phreatophytes in Butte Valley where the BMM approach was 19 
applied. Dense shrubland areas exhibit higher ETg rates (blue) than adjacent areas with more 20 
bare soil and sparse vegetation (light green, yellow). 21 

 22 

 23 
Figure 27. Annual ETg, ETa, ETo, and PPT rate time series for phreatophyte shrublands in the Butte 24 

Valley HUC-8 from 1985–2020. 25 

 26 
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 1 
Figure 28. Spatial distribution of long-term (1985–2020) average annual ETg rates for phreatophyte 2 

shrublands within the Butte Valley HUC-8.  3 

 4 

LIMITATIONS AND UNCERTAINTY 5 

Field Boundaries 6 

The delineation and attribution of field boundaries within the KRRNFS area are 7 
susceptible to many errors and uncertainties. Inaccuracies may arise due to human error 8 
associated with the process of manually digitizing field boundary polygons as well as 9 
misclassification errors associated with the irrigation status, irrigation type, irrigation source 10 
type, and crop type attributes.  11 

 12 



 

 
54 

IrrMapper 1 

The machine learning RF-based IrrMapper dataset used to determine annual irrigation 2 
status is in active development and will benefit from planned incremental improvements as 3 
the methodology and the training data are refined. The per-field irrigation status values 4 
represent the best available data for the study area. As of the time of this publishing, it is 5 
recognized that IrrMapper is most accurate for managed and engineered agricultural areas. 6 
For areas where natural wetlands or meadows were adapted for agricultural purposes, 7 
IrrMapper may often identify the areas as “wetland” in an intermediate step, and therefore 8 
classifies the areas as “unirrigated.” These areas often are sub-irrigated where vegetation 9 
benefits from the shallow depth to water. These areas have been challenging for modeling 10 
efforts in the region, as these areas are difficult to clearly define as exclusively natural or 11 
agricultural.  12 

 13 

 14 

ET Demands 15 

ET Demands is a potential ET crop model designed to simulate NIWR under well-16 
watered conditions with pristine management. Temperature-based thresholds are used to 17 
control growing season timing and crop development. Crop specific calibration parameters 18 
are calibrated for specific regions based on historical literature and comparison with NDVI 19 
time series derived from the Landsat satellite image archive. Manual calibration of CGDD, 20 
T30, and other crop growth parameters ultimately relies on expert user opinion and 21 
judgement. Calibration is meant to capture average conditions and practices and may not 22 
accurately represent field level growth for all fields and scenarios during all years. It is 23 
important to note that beginning and ending season ET rates (i.e., April and October) are 24 
relatively low, minimizing the influence of slight mismatches in ET Demands simulated start 25 
and end dates.  26 

The Klamath River Basin ET Demands model used a gridded approach based on the 27 
gridMET weather dataset 4km grid. Use of spatially varying weather data captures 28 
temperature and evaporative demand conditions not well resolved with coarser resolution 29 
implementations (e.g., HUC-6 or HUC-8). However, gridded application requires spatial 30 
interpolation of calibration parameters to account for spatial differences in management 31 
practices. Use of inverse distance weighting to interpolate calibration parameters may lead to 32 
inaccurate predictions in regions with abrupt spatial differences in crop development and 33 
timing. Additionally, field-level ET Demands crop assignments relied on year specific 34 
classifications from CDL from 2008 through 2020 and assumed a fixed crop type based on 35 
the 2008 to 2020 majority CDL classification for years prior. Discrepancies between CDL 36 
classifications and actual crop type will result in less accurate effective precipitation and 37 
subsequent net ET estimates.  38 

The KRRNFS ET Demands model does not consider the influence of shallow 39 
groundwater on irrigation supply and assumes sprinkler-style irrigation to meet all crop water 40 
requirements. Irrigation events within ET Demands occur at set MAD thresholds. Higher 41 
MAD thresholds increase the time between irrigation events, while lower thresholds result in 42 
more frequent watering. Adjustment of irrigation frequency can result in higher (or lower) 43 
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ET and NIWR due to additional water losses to both bare soil evaporation and deep 1 
percolation. Large differences between simulated and actual practices will impact the 2 
accuracy of ET Demands effective precipitation estimates.  3 

At the time of this work, the ET Demands model does not consider snowfall and 4 
accumulation when utilizing gridded weather datasets such as gridMET. All precipitation 5 
events within ET Demands occur as rain with immediate runoff and infiltration. 6 
Subsequently, ET Demands estimates of crop ET, Prz, and NIWR in areas with significant 7 
snowfall may not align with actual conditions. Additional work is needed to understand how 8 
snowfall accumulation, drift, and melt processes impact water availability, Prz, and NIWR in 9 
agricultural regions. Last, ET Demands crop growth simulations are based on typical 10 
northern-hemisphere April through October growth cycles. Non-standard management such 11 
as summer fallowing and or year-round growth may not be well represented in the model.  12 

 13 

 14 

ET of Agriculture and Wetlands 15 

The estimation of ETa using eeMETRIC for agricultural areas and wetlands are 16 
subject to uncertainties and limitations. Possible factors contributing to these uncertainties 17 
include the individual accuracies of the eeMETRIC remote sensing model and the automated 18 
calibration and QA/QC procedures, observed meteorological data, estimated weather data 19 
and bias correction of gridMET ETo, Landsat radiance and reflectance, spatial and temporal 20 
variability of cloud-free Landsat images, the interpolation of EToF values over time between 21 
Landsat images, additional gap-filling procedures, and previously mentioned uncertainties 22 
associated with field boundary dataset preparation. Nevertheless, previous studies have 23 
demonstrated that the eeMETRIC model used in this report generally provides accurate 24 
estimates within the range of 10 to 20 percent compared to measured crop ET in Oregon and 25 
other neighboring western states (Morton et al., 2013; Serbina and Miller, 2014; Liebert et 26 
al., 2015; Huntington et al., 2018; Huntington et al., 2022; Melton et al., 2022; Volk et al., 27 
2023b).  28 

 29 

Net ET of Agriculture and Wetlands 30 

Net ET estimates for agricultural lands developed by this analysis are produced 31 
through a chained modeling workflow incorporating both bias and uncertainty in modeled 32 
meteorological, ET, and effective precipitation estimates. Individual components of the 33 
modeling workflow have been extensively validated through in situ and inter-model 34 
comparisons (Abatzoglou, 2013; Allen & Robinson, 2009; Huntington and Allen, 2009; 35 
Huntington and Allen, 2010; Melton et al., 2022; Volk et al., 2024); however, direct 36 
validation of Net ET estimates is difficult due to limited in situ observations and temporal and 37 
spatial discrepancies between measured and modeled estimates. This analysis reports net ET 38 
rates and volumes with no intermediate rounding of remotely sensed ET, modeled effective 39 
precipitation, or GIS acreage estimates. Estimated accuracy across the Klamath River Basin 40 
study domain varies and should be interpreted with respect to the spatial and temporal scale 41 
of subsequent data applications. For example, Allen et al. (2011) provides a detailed 42 
discussion of ET measurement accuracy and typical errors for EC (15-30 percent), soil water 43 
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balance (10-30 percent), and remotely sensed energy balance (10-20 percent) approaches. 1 
Additionally, Daly et al. (2008) reports average absolute errors of approximately 10 percent 2 
in the Western U.S. for PRISM annual precipitation normals that serve as the basis for 3 
gridMET downscaling. Despite the uncertainty of each modeling component, this effort 4 
overcomes weaknesses of historical approaches reliant on empirical or theoretical estimates 5 
by leveraging gridded weather data and remote sensing to capture on the ground conditions 6 
and variability in climate and irrigation status over a long historical period.  7 

Monthly net ET estimates for wetlands assume that all precipitation discharges 8 
through ET (i.e., 100% of the total precipitation is effective) and none of the precipitation 9 
runs off or contributes to recharge. 10 

 11 

Phreatophyte ET 12 

ETg estimates from phreatophyte shrublands produced in this study have numerous 13 
uncertainties and limitations. The NDVI – ET* predictive equation used in the BMM 14 
approach is empirical and relies on EC, BR, Landsat surface reflectance, and relatively 15 
coarse resolution gridded weather datasets, all of which are known to have inaccuracies and 16 
errors. Uncertainty in the 54 site years of in situ ET estimates derived from 17 
micrometeorological flux towers has been characterized as being +/- 10 to 12 percent 18 
(Maurer et al., 2005; Meyers & Baldocchi, 2005; Allander et al., 2009). EBC corrections 19 
were applied in this study to reduce some of this uncertainty prior to the formulation of the 20 
NDVI – ET* predictive equation; however, these corrections do not account for 21 
measurement errors associated with the EC and BR systems themselves.  22 

The 4km gridded meteorological data from gridMET, air temperature, wind speed, 23 
solar radiation, humidity, and precipitation were used to develop estimates of ETo, PPT, and 24 
ET* in the BMM approach. Although ETo from gridMET was bias-corrected for improved 25 
estimation of ET over agricultural lands, no formal analysis was carried out to estimate 26 
similar biases over non-irrigated areas, such as the phreatophyte shrublands of Butte Valley, 27 
because of the absence of meteorological stations in shrubland environments within the study 28 
area. 29 

The BMM approach used in this study relies on Landsat surface reflectance data 30 
products and recently standardized atmospheric correction techniques developed by the 31 
USGS (Schmidt et al., 2013; USGS, 2022). Factors such as aerosols, clouds, haze, and water 32 
vapor are recognized to impact atmospheric correction, and our approach in this research 33 
utilizes state-of-the-art weather model results and additional satellite data to address these 34 
complexities. The Landsat images used in this study, which underwent QA/QC, were 35 
acquired during the period spanning June 1st to September 15th (corresponding to days of year 36 
152 through 258 in a non-leap year). For each year of the study period, a single estimate of 37 
NDVI, ET*, and ETg were produced to characterize the vigor of phreatophyte vegetation. 38 
While the use of a single composite value may not fully capture conditions throughout the 39 
entire year, several studies have demonstrated the utility of both single and composite 40 
satellite-based ET approaches in estimating ETa and ETg from areas potentially influenced by 41 
groundwater discharge (Groeneveld et al., 2007; Beamer et al., 2013; Minor, 2019). These 42 
estimates have shown good agreement with riparian ET assessments based on advanced SEB 43 
and time integration models that involve iterative processing (Khand et al., 2017). 44 
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Considering the numerous assumptions and intricacies involved in estimating and 1 
upscaling ETg rates from flux towers to a larger basin scale, the use of the NDVI – ET* 2 
regression model in this study is appealing. This is primarily because the model relies on 54 3 
site years of in situ ET estimates and Landsat vegetation indices specifically tailored to 4 
phreatophyte areas. Furthermore, this approach takes into account the temporal and spatial 5 
fluctuations in evaporative demand and precipitation, which are the two primary drivers of 6 
ET. When we take into consideration all these factors and the associated limitations, single-7 
scene or composite approaches emerge as more robust and likely to be more accurate 8 
compared to advanced SEB models or simple ET unit methods. In the latter approaches, ET 9 
rates from previous studies are assumed to be constant across time and space, and they are 10 
applied uniformly across similar ET units within the study areas of interest. However, it's 11 
important to acknowledge that the NDVI – ET* approach used in this study does have 12 
limitations that are common to empirical regression models. Additionally, the approach 13 
exhibits limited accuracy in estimating low ETg rates in regions with sparse vegetation. These 14 
limitations become particularly noticeable due to challenges related to low signal-to-noise 15 
ratios and uncertainties associated with bare soil contributions to ETg. 16 

Lastly, inaccuracies in the delineation of potential groundwater discharge areas (i.e., 17 
phreatophyte areas) are a potential source of error (Zhu and Young, 2009). The phreatophyte 18 
areas defined in this study were identified using datasets which included aerial imagery, 19 
multispectral satellite imagery (including LST data), groundwater level measurements, and 20 
GIS datasets containing information on topography, vegetation, and previous phreatophyte 21 
delineations. Previous and historical delineations of groundwater discharge boundaries may 22 
have been less precise, primarily due to limitations in the availability of representative data, 23 
in particular access to high-resolution aerial imagery. While it's possible that the actual areas 24 
of ETg could be smaller than those delineated in this study, areas with minimal ETg typically 25 
exhibit very low NDVI values. Consequently, the BMM approach predicts negligible ETg for 26 
these areas, as these low NDVI values indicate minimal vegetation cover. 27 

 28 

SUMMARY 29 

The primary objective of the ET Task of the Klamath River Revised Natural Flow 30 
Study was to develop field-scale estimates of ETa using the eeMETRIC model, estimates of 31 
ETg for phreatophyte shrublands using the BMM, estimates of wetlands ET using 32 
eeMETRIC, and develop estimates of effective precipitation, and net ET using the ET 33 
Demands model. eeMETRIC and ET Demands results were produced at the monthly, 34 
seasonal, and annual time steps, whereas BMM results were produced at the annual and 35 
seasonal time steps. The results from this effort are compiled into a series of field-specific 36 
.csv files, based on the delineated agricultural field boundaries, and are formatted for use in 37 
modeling and analysis using computer scripting languages which may be aggregated to 38 
irrigation districts or to hydrologic units as suitable for analysis and production of data. 39 
Calculations of ETg are produced in both tabular form and spatially explicit raster images. 40 
These results are intended to guide and inform modeling efforts currently underway by 41 
USBR and USGS. 42 

Combining ET estimates with effective precipitation from ET Demands allows for the 43 
partitioning of NIWR, runoff, infiltration, and evaporative losses. This work improves on 44 
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previous studies that relied on assumed or static rates of ET and effective precipitation, 1 
through the development and use of manually digitized agricultural field boundaries that 2 
represent maximum irrigated extents; use of long-term Landsat satellite data (1985–2020) 3 
and daily gridded weather data from gridMET (1979–2020); and state of the art land surface 4 
energy balance, machine learning, and soil water balance models. Datasets produced from 5 
this work are documented and intended for use within surface and groundwater modeling 6 
efforts of the KRRNFS, and other hydrologic studies.  7 
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SUPPLEMENTAL TABLES 1 

Supplemental Table 1. Agricultural weather stations used in bias correction of ETo, with mean monthly of station – GridMET ratios 2 

Station Name Source
Network

ID
Station

ID
GridMET 

ID State Latitude Longitude
Elevation
(meters) Period of Record

Jan
Mean Station 
ETo/GridMET 

ETo

Feb
Mean Station 
ETo/GridMET 

ETo

Mar
Mean Station 
ETo/GridMET 

ETo

Apr
Mean Station 
ETo/GridMET 

ETo

May
Mean Station 
ETo/GridMET 

ETo

Jun
Mean Station 
ETo/GridMET 

ETo

Jul
Mean Station 
ETo/GridMET 

ETo

Aug
Mean Station 
ETo/GridMET 

ETo

Sep
Mean Station 
ETo/GridMET 

ETo

Oct
Mean Station 
ETo/GridMET 

ETo

Nov
Mean Station 
ETo/GridMET 

ETo

Dec
Mean Station 
ETo/GridMET 

ETo

Annual Mean 
Station 

ETo/GridMET 
ETo

Cedarville Agrimet PN cedc 031_CA 548966 CA 41.5853 -120.171 1402
6/23/1989 – 
5/31/2019 0.86 0.96 0.99 0.97 0.95 0.95 0.96 0.94 0.91 0.89 0.87 0.86 0.94

McArthur CIMIS 43 044_CA 532303 CA 41.0638 -121.456 1009
1/2/1994 – 
12/31/2018 0.71 0.82 0.87 0.90 0.87 0.90 0.90 0.87 0.83 0.78 0.69 0.70 0.86

Alturas CIMIS 90 066_CA 544801 CA 41.4382 -120.48 1343
1/2/1994 – 
12/31/2018 0.89 0.91 0.91 0.85 0.84 0.87 0.91 0.91 0.91 0.89 0.94 0.91 0.89

Tulelake FS CIMIS 91 067_CA 561409 CA 41.9589 -121.472 1230
1/2/1994 – 
12/31/2018 0.83 0.94 0.95 0.92 0.92 0.94 0.91 0.91 0.92 0.86 0.86 0.87 0.91

Shasta
College CIMIS 224 162_CA 517037 CA 40.6255 -122.311 180

1/2/2013 – 
12/31/2018 0.91 0.88 0.80 0.82 0.85 0.88 0.88 0.84 0.83 0.84 0.85 0.88 0.85

Scott Valley CIMIS 225 163_CA 548902 CA 41.5778 -122.838 833
4/20/2015 – 
12/31/2018 0.75 0.71 0.82 0.86 0.86 0.91 0.92 0.85 0.85 0.81 0.73 0.69 0.86

Macdoel II CIMIS 236 174_CA 557238 CA 41.8025 -121.996 1300
4/18/2015 – 
12/31/2018 0.99 0.93 0.94 0.88 0.87 0.97 0.99 0.94 0.94 0.96 0.96 0.92 0.94

Christmas
Valley Agrimet PN chvo 765_OR 604393 OR 43.2414 -120.728 1312

7/13/1990 – 
5/24/2019 0.93 0.96 0.97 0.98 0.94 0.97 0.95 0.94 0.91 0.90 0.92 0.94 0.95

Klamath
Falls Agrimet PN kflo 776_OR 568332 OR 42.1647 -121.755 1250

3/31/1999 – 
5/29/2019 0.72 0.84 0.90 0.92 0.92 0.95 0.90 0.87 0.84 0.78 0.74 0.74 0.88

Lakeview Agrimet PN lako 777_OR 566976 OR 42.1222 -120.523 1454
6/23/1989 – 
5/29/2019 0.77 0.84 0.89 0.93 0.92 0.96 0.95 0.93 0.92 0.87 0.80 0.78 0.92

Lorella Agrimet PN loro 778_OR 565573 OR 42.0778 -121.224 1268
4/2/2001 – 
5/29/2019 0.77 0.85 0.88 0.90 0.89 0.92 0.90 0.89 0.85 0.82 0.82 0.82 0.88

Medford Agrimet PN mdfo 779_OR 573848 OR 42.3311 -122.938 408
6/23/1989 – 
5/25/2019 0.60 0.69 0.78 0.85 0.82 0.84 0.81 0.75 0.70 0.65 0.61 0.54 0.77

Worden Agrimet PN wrdo 788_OR 564173 OR 42.0125 -121.788 1244
4/20/2000 – 
5/29/2019 0.74 0.88 0.94 0.96 0.93 0.93 0.88 0.88 0.87 0.84 0.84 0.82 0.90

Lynhart
Ranch SCAN 2074 1077_OR 564183 OR 42.0187 -121.389 1247

1/1/2010 – 
10/5/2018 0.75 0.95 0.91 0.92 0.91 0.95 0.89 0.82 0.83 0.82 0.82 0.73 0.88
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Supplemental Table 2. Crosswalk of CDL classes to crop types supported by ET Demands 1 

CDL Crop 
Number CDL Crop Type 

ET Demands Crop 
Number ET Demands Crop Assignment 

0 Background 4  Grass Hay 
1 Corn  7  Field Corn 
12 Sweet Corn  9  Sweet Corn 
14 Mint  4  Grass Hay 
21 Barley 11  Spring Grain 
23 Spring Wheat 11  Spring Grain 
24 Winter Wheat 4  Grass Hay 
25 Other small grains  11  Spring Grain 
27 Rye 4  Grass Hay 
28 Oats 4  Grass Hay 
35 Mustard  4  Grass Hay 
36 Alfalfa 3  Grass Hay 
37 Other Hay/Non Alfalfa 4  Grass Hay 
38 Camelina  4  Grass Hay 
41 Sugarbeets  21  Garden Vegetables 
42 Dry Beans  21  Garden Vegetables 
43 Potatoes  29 Potatoes Early Season 
44 Other Crops  4  Grass Hay 
47 Misc Vegs & Fruits  21  Garden Vegetables 
49 Onions  21  Garden Vegetables 
53 Peas 21  Garden Vegetables 
57 Herbs  21  Garden Vegetables 
59 Sod/Grass Seed  4  Grass Hay 
61 Fallow/Idle Cropland 4  Grass Hay 
68 Apples 21  Garden Vegetables 
69 Grapes  21  Garden Vegetables 
71 Other Tree Crops 4  Grass Hay 
77 Pears  21  Garden Vegetables 
82 Developed  4  Grass Hay 
87 Wetlands  51  Wetlands Large Stand 

111 Open Water  51  Wetlands Large Stand 
121 Developed/Open Space 4  Grass Hay 
122 Developed/Low Intensity 4  Grass Hay 
123 Developed Med Intensity  4  Grass Hay 
131 Barren  4  Grass Hay 
141 Deciduous Forest 4  Grass Hay 
142 Evergreen Forest 4  Grass Hay 
143 Mixed Forest  4  Grass Hay 
152 Shrubland 4  Grass Hay 
176 Grass/Pasture  4  Grass Hay 
179 Error CDL code 179 = 176 4  Grass Hay 
190 Woody Wetlands  4  Grass Hay 
195 Herbaceous Wetlands  51  Wetlands Large Stand 
205 Triticale 11 Spring Grain 
206 Carrots  21  Garden Vegetables 
208 Garlic  21  Garden Vegetables 
221 Strawberries  21  Garden Vegetables 
227 Lettuce  21  Garden Vegetables 
241 Dbl Crop Corn/Soybeans  7  Field Corn 
242 Blueberries  21  Garden Vegetables 
247 Turnips 21  Garden Vegetables 
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APPENDICES 1 

Appendix 1. Data products 2 

Please note that these data products are for official use only and hosted by U.S. Bureau of 3 
Reclamation. To request access please contact Caroline Ubing (cubing@usbr.gov) 4 

• Agricultural Field Boundaries 5 

• Time series data for eeMETRIC ETa and ET Demands 6 

• Groundwater Component of ET (ETg) for Phreatophytic Vegetation 7 

• KNFS ET Demands model package  8 

 9 

Appendix 2. Description of the agricultural field boundary dataset and feature 10 
attributes 11 

  12 

Agricultural Field Boundaries 13 

The agricultural field boundary dataset represents the maximum irrigated extent from 14 
1985–2020. Basic feature attributes included in the dataset/shapefile include a unique 15 
identification name, positional information relative to state borders and the military grid 16 
reference system (MGRS) tiles, total feature/field acreage, crop type information through 17 
time (2008–2020), the data source of each annual crop type classification, the latest feature 18 
modification date, the irrigation system type (1995–2020), the irrigation water source, the 19 
irrigation status through time (1985–2020), and growing season average NDVI through time 20 
(1985–2020). The field names within the field boundary shapefile are as follows: 21 

  22 

OPENET_ID –  The OPENET_ID represents the unique field/feature identification 23 
code/name. 24 

  25 

MGRS_TILE – The military grid reference system (MGRS) Grid Zone identifier the field is 26 
located within. 27 

  28 

STATE – The state that the field is located within. 29 

  30 

ACRES – The total area of field/feature in acres. 31 

  32 

mailto:cubing@usbr.gov
https://doimspp.sharepoint.com/:f:/r/sites/KlamathNaturalFlowExternal/Shared%20Documents/General/DRI/Agricultural_Field_Boundaries?csf=1&web=1&e=UfedsT
https://doimspp.sharepoint.com/:f:/r/sites/KlamathNaturalFlowExternal/Shared%20Documents/General/DRI/Time%20Series%20Updates%20May%202023?csf=1&web=1&e=ausAQc
https://doimspp.sharepoint.com/:f:/r/sites/KlamathNaturalFlowExternal/Shared%20Documents/General/DRI/Groundwater%20ET/update_2023?csf=1&web=1&e=IJRQr4
https://doimspp.sharepoint.com/:f:/r/sites/KlamathNaturalFlowExternal/Shared%20Documents/General/DRI/ET%20Demands?csf=1&web=1&e=ZWvOGd
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CROP_[YEAR] – The mode/majority classification of the USDA Cropland Data Layer 1 
codes within the field boundary for a given year. 2 

  3 

CSRC_[YEAR] – The online data source for the crop type classification for a given year. 4 

  5 

ITYP_[YEAR] – The irrigation system type classification (0, 1, 2, 3, 4, or 5) for a given 6 
year. “0” represents Developed/No longer irrigated, “1” represents Sprinkler-Pivot-Linear, 7 
“2” represents Sprinkler-Other (Wheel Line, Hand Line, Solid Set, Big Gun, Travelling Gun, 8 
Pods), “3” represents Flood-Uncontrolled (Wild Flood) and No Apparent Irrigation 9 
Equipment, “4” represents Flood Controlled (Land Leveling, Borders, Basins, Furrows), and 10 
“5” represents Micro (Micro Sprinklers, Drip Lines, Subsurface Drip). 11 

  12 

IRR_[YEAR] – The irrigation status of the field/feature for a given year. A value of 1 13 
represents irrigated conditions and a value of 0 represents non-irrigated conditions. Decimal 14 
values between 0 and 1 represent the spatial average of all the pixels within the field 15 
boundary.  16 

  17 

GSNDVI_[YEAR] – The spatial average of the growing season (Apr–Oct) mean normalized 18 
difference vegetation index derived from Landsat for a given year. 19 

  20 

  21 

Appendix 3. Description of monthly summaries of ET, ETo, EToF, total precipitation, 22 
effective precipitation, and net ET 23 

  24 

Monthly Time Series 25 

The monthly net ET time series are assembled as one file per field boundary and 26 
contain information for the entire KNFS study period of 1980–2020. The monthly net ET 27 
time series has net ET information for up to 51 crops or land use conditions, which 28 
correspond to 8 simplified/generalized assignments used by ET Demands. Missing ET data 29 
for each time series during the time frame of March 1984–September 2020 was gap filled by 30 
first linearly interpolating monthly fraction of reference ET (EToF) and then multiplying the 31 
monthly EToF by the corresponding monthly reference ET (ETo) to obtain actual monthly 32 
ET. Generally, missing ET data occurred in the winter months due to cloud contamination of 33 
the Landsat scene imagery. Because wintertime ET is often low, the total net ET is not 34 
impacted substantially by the gap filled data. For the October 1980–February 1984 time 35 
frame, Landsat and OpenET data is not available. To estimate ET prior to the Landsat and 36 
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OpenET data records, an analog approach was used that combines EToF from periods of 1 
similar wetness with the evaporative demand (i.e., ETo) from pre-March 1984. Analog years 2 
that were selected for this analysis are listed in table 3. The monthly net ET files are under 3 
100kb each but with over 12,000 fields the total size of the dataset is quite large. The size of 4 
this dataset necessitated the organization of output files into multiple folders for sharing 5 
purposes. The crop types that are included for the net ET time series are listed in 6 
Supplementary Table 2. 7 

The names of the net ET files for the agricultural field boundaries contain a unique 8 
OPENET_ID name/code (e.g., “KB_5”), the irrigation district name (e.g., “KID”) or the 9 
HUC-8 code (e.g., “18010201”), which represents the region where the field boundary is 10 
located, and the file extension “.csv.” For example, the name for the field above is 11 
“KB_5_eemetric_etdemands_monthly_klamath_18010201_1980_2020.csv.”  12 

The time series for each field is from October 1980–December 2020. The monthly 13 
files contain rates of actual ET, reference ET, precipitation, and effective precipitation in 14 
units of mm/month, along with volumetric summaries of ET, reference ET, precipitation, 15 
effective precipitation, and net ET in units of acre-feet/month. The organization and 16 
definitions for the field names are as follows: 17 

  18 

date – the date (start of month) in the format MM/DD/YYYY. 19 

  20 

et (actual monthly ET) – the total estimated flux of ET as estimated by the OpenET 21 
eeMETRIC model in units of mm/month. 22 

  23 

et_fraction (fraction of grass reference ET) – the ratio of the actual monthly ET as estimated 24 
by the OpenET eeMETRIC model to the monthly grass reference ET as estimated by 25 
gridMET. 26 

  27 

et_reference (grass reference monthly ET) – the total estimated flux of ET from a 28 
hypothetical grass reference crop in units of mm/month. 29 

  30 

ppt (total precipitation) – the total precipitation amounts as estimated by gridMET in units of 31 
mm/month. 32 

  33 

ACRES (total field area) – the total field/feature area in units of acres. 34 

  35 
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P_rz (precipitation residing in the root zone) – the amount of gross reported precipitation less 1 
any surface runoff or deep percolation that resides in the soil and is available for 2 
consumption by evaporation or transpiration in units of mm/month. P_rz is computed as P – 3 
Runoff – DPerc in ET Demands where P is gross reported precipitation, Runoff is estimated 4 
surface runoff and DPerc is deep percolation of any precipitation below the maximum root 5 
zone for the crop or land cover type. 6 

  7 

P_eft (precipitation residing in the root zone that is available for transpiration) – the amount 8 
of gross reported precipitation less any surface runoff or deep percolation that resides in the 9 
soil and is available for consumption by transpiration in units of mm/month. P_eft does not 10 
include the amount of infiltrated precipitation that evaporates from the surface evaporation 11 
layer (upper 100 mm of soil). The P_eft parameter is useful in estimating the amount of 12 
precipitation during the non-growing season that is stored and made available for 13 
transpiration requirements during the growing season. P_eft is always less than P_rz. When 14 
analyzed during the growing season, P_eft is useful for estimating how ‘efficient’ 15 
precipitation is in fulfilling transpiration requirements of crops, as opposed to simply 16 
‘burning off’ as evaporation from the soil surface. P_eft was calculated as P – Runoff – 17 
Dperc – surface evaporation losses.  18 

  19 

Irrigation – the irrigation timing and amount is simulated using a daily soil water balance in 20 
units of mm/month. Irrigation is simulated when the root zone dries to the specified threshold 21 
point (i.e., the maximum allowable depletion) where stress will begin to occur (listed in 22 
appendix 5). The simulated irrigation frequency and depth per irrigation is a function of the 23 
crop type and available water holding capacity.  24 

  25 

Runoff (surface runoff from precipitation) – the surface runoff is estimated during 26 
precipitation events using the NRCS curve number as described in the main body of text. 27 
Units are in mm/month. 28 

  29 

CDL Code (crop type classification) – the mode/majority crop type within the field that is 30 
used to crosswalk to the ET Demands classification for pairing with effective precipitation.  31 

  32 

ET Demands Code (simplified crop type classification) – the crop assignment used by ET 33 
Demands for the daily soil water balance simulation.  34 

  35 

GRIDMET_ID – the gridMET cell identification used to pair ET Demands with the 36 
eeMETRIC data. 37 

  38 
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OPENET_ID – the unique OpenET identification code/name for the field/feature. 1 

  2 

ET Volume (ac-ft) – the total actual monthly ET volume in units of acre-feet/month. 3 
Calculated by multiplying the spatially averaged actual monthly ET rate by the field acreage.  4 

  5 

ETo Volume (ac-ft) – the total monthly reference ET volume in units of acre-feet/month. 6 
Calculated by multiplying the spatially averaged monthly reference ET rate by the field 7 
acreage.  8 

  9 

PPT Volume (ac-ft) – the total monthly precipitation volume in units of acre-feet/month. 10 
Calculated by multiplying the spatially averaged monthly precipitation rate by the field 11 
acreage.  12 

  13 

Effec. PPT Volume (ac-ft) – the total monthly effective precipitation (equivalent to P_rz) 14 
volume in units of acre-feet/month. Calculated by multiplying the P_rz rate from ET 15 
Demands by the field acreage. 16 

  17 

Net ET Volume (ac-ft) – the total monthly net ET volume in units of acre-feet/month. 18 
Calculated by subtracting the total monthly effective precipitation volume from the total 19 
actual monthly ET volume. 20 

  21 

 22 

Appendix 4. Description of annual and seasonal summaries of groundwater ET  23 

  24 

Annual Summaries 25 

Annual summaries of ETg as estimated by the Beamer-Minor Method (BMM) for 26 
Butte Valley are provided in both raster and tabular formats. The annual ETg rasters (1985–27 
2020) have 30-meter pixel resolution with a spatial extent limited to the extent of 28 
phreatophyte shrublands (i.e., area of potential groundwater discharge) within the Butte 29 
Valley basin. Each raster represents the total annual (Oct–Sept, water year timestep) ETg in 30 
units of millimeters per year and are in GeoTIFF file format (e.g., butte_2015.etg_mean.tif). 31 
Complementing the annual ETg rasters is a tabular summary 32 
(“klamath_etg_butte_only.xlsx”), which contains information about all Landsat satellite 33 
imagery and derived products that were produced by the BMM to estimate annual ETg. 34 
Additional derived variables that were not directly used by the BMM but are useful for 35 
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QA/QC procedures include normalized difference water index (NDWI), soil-adjusted 1 
vegetation index (SAVI), albedo, land surface temperature (TS), and enhanced vegetation 2 
index (EVI). The “ETg Volume” tab of the tabular summary lists all of the Landsat scenes 3 
and the spatial averages of numerous QA/QC variables and variables produced and used by 4 
the BMM. The field/column definitions are as follows: 5 

  6 

ZONE_NAME – the zone/feature name used for zonal statistics. 7 

  8 

ZONE_FID – the unique FID code of the zone/feature. 9 

  10 

DATE – the Landsat scene overpass date in the format MM/DD/YYYY. 11 

  12 

SCENE_ID – the Landsat scene identification text. 13 

  14 

PLATFORM – the specific Landsat satellite code name. 15 

  16 

PATH – the path of the Landsat satellite for the given overpass date. 17 

  18 

ROW – the row of the Landsat satellite, which is the latitudinal center line of a frame of 19 
imagery for the given overpass date. 20 

  21 

YEAR – the year of the overpass date. 22 

  23 

MONTH – the month of the overpass date. 24 

  25 

DAY – the day of the month for the overpass date. 26 

  27 

DOY – the day of the year for the overpass date. 28 

  29 

PIXEL_COUNT – the total number of pixels intersecting the zone/feature used in the BMM 30 
to estimate annual ETg. 31 
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  1 

PIXEL_TOTAL – the total number of pixels intersecting the zone/feature that could 2 
nominally be used in the BMM to estimate annual ETg. 3 

  4 

FMASK_COUNT – the total number of pixels intersecting the zone/feature that were 5 
flagged by the FMask masking algorithm, which is used for clouds, cloud shadows, snow/ice, 6 
and water masking.  7 

  8 

FMASK_TOTAL – the total number of pixels intersecting the zone/feature that could 9 
nominally be masked by the FMask algorithm.  10 

  11 

FMASK_PCT – the percentage of the total pixels that were masked by the FMask 12 
algorithm. 13 

  14 

ETSTAR_COUNT – the total number of pixels intersecting the zone/feature that fell below 15 
the BMM regression line that were assigned minimum ET* values. 16 

  17 

CLOUD_SCORE – the simple cloud score for the image based on the pixels intersecting the 18 
zone/feature. 19 

  20 

QA – Quality assessment flag used to identify poor quality scenes (unused, relied on manual 21 
filtering instead). 22 

  23 

NDVI_SUR – the spatial average of the normalized difference vegetation index surface 24 
reflectance values for the zone/feature. 25 

  26 

NDVI_TOA – the spatial average of the normalized difference vegetation index top-of-27 
atmosphere values for the zone/feature. 28 

  29 

SAVI_SUR – the spatial average of the soil-adjusted vegetation index surface reflectance 30 
values for the zone/feature. 31 

  32 
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ALBEDO_SUR – the spatial average of the albedo values for the zone/feature. 1 

  2 

TS – the spatial average of the land surface temperature values for the zone/feature in units 3 
of kelvin. 4 

  5 

EVI_SUR – the spatial average of the EVI surface reflectance values for the zone/feature. 6 

  7 

ETSTAR_MEAN – the spatial average of the ET* values for the zone/feature as estimated 8 
by the BMM. 9 

  10 

ETG_MEAN – the spatial average of the annual ETg values for the zone/feature in units of 11 
mm/yr. 12 

  13 

ETG_LPI – the lower 90th percentile prediction interval estimates of annual ETg based on 14 
the BMM regression in units of mm/yr. 15 

  16 

ETG_UPI – the upper 90th percentile prediction interval estimates of annual ETg based on 17 
the BMM regression in units of mm/yr. 18 

  19 

ETG_LCI – the lower 90th percentile confidence interval estimates of annual ETg based on 20 
the BMM regression. 21 

  22 

ETG_UCI – the upper 90th percentile confidence interval estimates of annual ETg based on 23 
the BMM regression in units of mm/yr. 24 

  25 

WY_ETO – the total water year ETo as estimated by gridMET and used in the BMM in units 26 
of mm/yr. 27 

  28 

WY_PPT – the total water precipitation as estimated by gridMET and used in the BMM in 29 
units of mm/yr. 30 

  31 
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Below the rows with the column values described above is the median annual groundwater 1 
ET rates from 1985-2020, total zone/feature acreage, and the median annual ETg volume for 2 
the Butte Valley phreatophyte shrublands, which amount to 0.398 ft/yr, 7,435 acres, and 3 
2,958 acre-ft/yr. 4 

 5 

Seasonal Summaries 6 

Seasonal summaries of ETg as estimated by the Beamer-Minor Method (BMM) for 7 
Butte Valley are provided in raster format. The seasonal ETg rasters (1985–2020) have 30-8 
meter pixel resolution with a spatial extent limited to the extent of phreatophyte shrublands 9 
(i.e., area of potential groundwater discharge) within the Butte Valley basin. Each raster 10 
represents the total seasonal/quarterly (Oct–Dec, Jan–Mar, Apr–Jun, and Jul–Sept; water 11 
year timestep) ETg in units of millimeters per quarter and are in GeoTIFF file format (e.g., 12 
butte_etg_Oct_Dec_wy_2015.tif). Seasonal summaries of ETg for each water year were 13 
calculated by first computing the ratio of annual ETg to annual ETo and then multiplying the 14 
ETg/ETo ratio by the seasonal ETo. 15 

 16 

Appendix 5. Description of ET Demands model package and monthly output files 17 

The ET Demands model package includes both input and output files used for 18 
execution of the model for the KNFS. Input datasets include grid cell location information 19 
(.shp), soils data (.shp), crop type (.cdl), and climate time series (.csv). Preprocessing 20 
routines reduce spatial datasets into formatted text files for input to ET Demands. Calibration 21 
files containing crop parameter values for each grid cell and crop type are stored in .shp 22 
format within the Calibration folder. Output files include daily monthly, and annual summary 23 
time series .csv files for each unique crop, grid cell combination. The following describes the 24 
monthly ET Demands output .csv files utilized for consumptive use estimation produced in 25 
the monthly Agricultural Field Boundary datasets described in Appendix 3. A full description 26 
of the ET Demands model and all required input and output files can be found in online 27 
documentation hosted at: https://github.com/usbr/et-demands.  The monthly ET Demands 28 
.csv output field/column definitions are as follows: 29 

Date –   the date (start of month) in the format YYYY-MM 30 

 31 

Year –   model simulation year in format YYYY. 32 

 33 

Month –   model simulation numerical month value. 34 

 35 

PMeto_mm –   input grass reference evapotranspiration (ET) adjusted using OpenET bias 36 
correction surface values in units of mm/month. 37 

https://github.com/usbr/et-demands
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 1 

ETact – ETa estimates including stress adjustments in units of mm/month. ETact includes 2 
transpiration and evaporation from the soil surface from both precipitation and irrigation. 3 

 4 

ETpot – crop specific potential ET in units of mm/month. 5 

 6 

ETbas – basal evaporation component of ET in units of mm/month. 7 

 8 

Kc – monthly average crop coefficient (unitless). 9 

 10 

Kcb –  monthly average basal crop coefficient (unitless). 11 

 12 

PPT –  total monthly precipitation in units of mm/month.  13 

 14 

Irrigation – total monthly irrigation simulated by ET Demands in units of mm/month. 15 

 16 

Runoff – total monthly runoff in units of mm/month. 17 

 18 

DPerc – total monthly deep percolation from the root zone in units of mm/month. 19 

 20 

P_rz – monthly total precipitation residing in the root zone available for either evaporation or 21 
transpiration in units of mm/month (see full description in Appendix 3). 22 

 23 

P_eft – monthly total precipitation residing in the root zone available for transpiration only in 24 
units of mm/month (see full description in Appendix 3). 25 

 26 

P_rz_fraction – fraction of monthly total P_rz to monthly total precipitation (unitless). 27 

 28 

P_eft_fraction – fraction of monthly total P_eft to monthly total precipitation (unitless). 29 

 30 

NIWR – monthly total net irrigation water requirement in units of mm/month.  31 
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 1 

Season – total number of active growing season days within simulation month.  2 

 3 

Cutting – total number of cutting events during simulation month.  4 

 5 
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